-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathr1_zero_math.py
80 lines (69 loc) · 2.5 KB
/
r1_zero_math.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# Copyright 2025 Garena Online Private Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import launchpad as lp
from oat.algorithms.ppo import PPOActor, PPOArgs, PPOLearner
from oat.args import default_args_validation, get_default_args
from oat.interface import get_program
from oat.oracles.countdown import CountdownOracle
class ZeroMathActor(PPOActor):
def __init__(self, ipc_server, vllm_args, args: PPOArgs) -> None:
super().__init__(ipc_server, vllm_args, args)
if args.oracle == "countdown":
self.oracle = CountdownOracle()
else:
raise NotImplementedError
# Special treatment to sample from a base model - now only cover Qwen.
self.sampling_params.stop = (
[
"</s>",
"<|im_end|>",
"<|endoftext|>",
"\nUser:",
]
if "qwen" in args.pretrain.lower()
else []
)
self.sampling_params.stop_token_ids = (
[151645, 151643] if "qwen" in args.pretrain.lower() else []
)
self.eval_sampling_params.stop = (
[
"</s>",
"<|im_end|>",
"<|endoftext|>",
"\nUser:",
]
if "qwen" in args.pretrain.lower()
else []
)
self.eval_sampling_params.stop_token_ids = (
[151645, 151643] if "qwen" in args.pretrain.lower() else []
)
def run_ppo(args: PPOArgs):
learner_cls = PPOLearner
actor_cls = ZeroMathActor
program, local_resources = get_program(args, learner_cls, actor_cls)
lp.launch(
program,
launch_type=args.launch_type,
local_resources=local_resources,
terminal="current_terminal",
)
if __name__ == "__main__":
args: PPOArgs = get_default_args(PPOArgs)
# Customization:
args.algo = "PPO"
args.online_evaluation = True # Use GT answer for online verification.
args = default_args_validation(args)
run_ppo(args)