|
| 1 | +from __future__ import print_function |
| 2 | +import torch |
| 3 | +import torch.utils.data |
| 4 | +from torch import nn, optim |
| 5 | +from torch.autograd import Variable |
| 6 | +import argparse |
| 7 | +import numpy as np |
| 8 | +from torch.nn import functional as F |
| 9 | +from torchvision import datasets, transforms |
| 10 | +from torchvision.utils import save_image |
| 11 | +from model import VaeNet |
| 12 | + |
| 13 | +# Define arguments required for training using parser. |
| 14 | +parser = argparse.ArgumentParser(description='VAE CIFAR example') |
| 15 | +parser.add_argument('--batch_size', type=int, default=128, metavar='N', |
| 16 | + help='input batch size for training (default: 128)') |
| 17 | +parser.add_argument('--epochs', type=int, default=10, metavar='N', |
| 18 | + help='number of epochs to train (default: 10)') |
| 19 | +parser.add_argument('--no_cuda', action='store_true', default=False, |
| 20 | + help='enables CUDA training') |
| 21 | +parser.add_argument('--seed', type=int, default=1, metavar='S', |
| 22 | + help='random seed (default: 1)') |
| 23 | +parser.add_argument('--latent_dim', type=int, default=100, metavar='L', |
| 24 | + help='size of the latent dimension (default: 100)') |
| 25 | +parser.add_argument('--log_interval', type=int, default=100, metavar='N', |
| 26 | + help='how many batches to wait for before logging training status') |
| 27 | + |
| 28 | +# Parse the arguments and see if cuda is available |
| 29 | +args = parser.parse_args() |
| 30 | +args.cuda = not args.no_cuda and torch.cuda.is_available() |
| 31 | + |
| 32 | +# Use the defined seed to initialize state |
| 33 | +torch.manual_seed(args.seed) |
| 34 | +if args.cuda: |
| 35 | + torch.cuda.manual_seed(args.seed) |
| 36 | + |
| 37 | +# Define the transformation process of the data. |
| 38 | +transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) |
| 39 | + |
| 40 | +trainset = datasets.CIFAR10(root='./data/', train=True, download=True, |
| 41 | + transform=transform) |
| 42 | +trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, |
| 43 | + num_workers=3) |
| 44 | +testset = datasets.CIFAR10(root='./data/', train=False, download=True, |
| 45 | + transform=transform) |
| 46 | +testloader = torch.utils.data.DataLoader(testset, batch_size=args.batch_size, shuffle=False, |
| 47 | + num_workers=3) |
| 48 | +# Define the model and port it to the gpu |
| 49 | +model = VaeNet(batch_size=args.batch_size, latent_dim=args.latent_dim) |
| 50 | +if args.cuda: |
| 51 | + model = model.cuda() |
| 52 | + |
| 53 | +optimizer = optim.Adam(model.parameters(), lr=1e-4) |
| 54 | + |
| 55 | +# Define the loss function. |
| 56 | +def vae_loss(x_recons, x_original, mu, log_sigma_sq): |
| 57 | + reconstruct_loss = F.mse_loss(x_recons, x_original) |
| 58 | + # KL divergence loss can be defined as follows |
| 59 | + # 0.5 * sum(1 + log(sigma^2) - mu^2 -sigma^2) |
| 60 | + kl_div = -0.5 * torch.sum(1 + log_sigma_sq - mu.pow(2) - log_sigma_sq.exp()) |
| 61 | + kl_div /= args.batch_size * 32 * 32 * 3 |
| 62 | + return kl_div, reconstruct_loss |
| 63 | + |
| 64 | +# Define the train step |
| 65 | +def train(epoch): |
| 66 | + model.train() |
| 67 | + train_loss = 0 |
| 68 | + likelihood = 0 |
| 69 | + divergence = 0 |
| 70 | + for batch_idx, data in enumerate(trainloader): |
| 71 | + images, labels = data |
| 72 | + if args.cuda: |
| 73 | + images = Variable(images.cuda()) |
| 74 | + optimizer.zero_grad() |
| 75 | + reconstructed_img, mu, log_sigma_sq = model(images) |
| 76 | + kl_div, recon_loss = vae_loss(reconstructed_img, images, mu, log_sigma_sq) |
| 77 | + loss = kl_div + recon_loss |
| 78 | + loss.backward() |
| 79 | + train_loss += loss.data[0] |
| 80 | + likelihood += recon_loss |
| 81 | + divergence += kl_div |
| 82 | + optimizer.step() |
| 83 | + if batch_idx % args.log_interval == 0: |
| 84 | + print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( |
| 85 | + epoch, batch_idx * len(data), len(trainloader.dataset), |
| 86 | + 100. * batch_idx / len(trainloader), |
| 87 | + loss.data[0] / len(data))) |
| 88 | + print('Epoch: %f, Average loss: %f, Average reconstruction loss: %f, Average kl divergence loss: %f' \ |
| 89 | + % (epoch, train_loss / len(trainloader.dataset), \ |
| 90 | + likelihood / len(trainloader.dataset), \ |
| 91 | + divergence / len(trainloader.dataset))) |
| 92 | + |
| 93 | +# Define the test step |
| 94 | +def test(epoch): |
| 95 | + model.eval() |
| 96 | + test_loss = 0 |
| 97 | + for batch_idx, data in enumerate(testloader): |
| 98 | + images, labels = data |
| 99 | + if args.cuda: |
| 100 | + images = Variable(images.cuda()) |
| 101 | + reconstructed_img, mu, log_sigma_sq = model(images) |
| 102 | + kl_div, recon_loss = vae_loss(reconstructed_img, images, mu, log_sigma_sq) |
| 103 | + test_loss += (kl_div + recon_loss).data[0] |
| 104 | + if batch_idx == 0: |
| 105 | + n = min(images.size(0), 8) |
| 106 | + comparison = torch.cat([images[:n], |
| 107 | + reconstructed_img.view(args.batch_size, 3, 32, 32)[:n]]) |
| 108 | + save_image(comparison.data, |
| 109 | + 'results/reconstruction_' + str(epoch) + '.png', nrow=n) |
| 110 | + |
| 111 | + test_loss /= len(testloader.dataset) |
| 112 | + print('Test set loss: %f' % (test_loss)) |
| 113 | + |
| 114 | +# Set up the training loop |
| 115 | +for epoch in range(1, args.epochs + 1): |
| 116 | + train(epoch) |
| 117 | + test(epoch) |
| 118 | + # Sample a random value from the gaussian distribution |
| 119 | + sample = Variable(torch.randn(args.batch_size, 100)) |
| 120 | + if args.cuda: |
| 121 | + sample = sample.cuda() |
| 122 | + sample = model.decoder(sample) |
| 123 | + save_image(sample.data.view(args.batch_size, 3, 32, 32), |
| 124 | + 'results/sample_' + str(epoch) + '.png') |
| 125 | + |
0 commit comments