diff --git a/src/sage/geometry/cone_catalog.py b/src/sage/geometry/cone_catalog.py index 27a308193cf..f5d366d259f 100644 --- a/src/sage/geometry/cone_catalog.py +++ b/src/sage/geometry/cone_catalog.py @@ -630,10 +630,10 @@ def schur(ambient_dim=None, lattice=None): in ``lattice``. The Schur cone in `n` dimensions induces the majorization - preordering on the ambient space. If `\left\{e_{1}, e_{2}, \ldots, - e_{n}\right\}` is the standard basis for the space, then its - generators are `\left\{e_{i} - e_{i+1}\ |\ 1 \le i \le - n-1\right\}`. Its dual is the downward monotone cone. + preordering on the :func:`downward_monotone` cone. If + `\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}` is the standard basis + for the space, then its generators are `\left\{e_{i} - e_{i+1}\ |\ + 1 \le i \le n-1\right\}`. Its dual is the downward monotone cone. INPUT: @@ -706,9 +706,9 @@ def schur(ambient_dim=None, lattice=None): sage: cones.schur(0).is_trivial() True - The Schur cone induces the majorization preordering, as in Iusem - and Seeger's [IS2005]_ Example 7.3 or Niezgoda's [Niez1998]_ - Example 2.2:: + The Schur cone induces the majorization preordering on the + downard-monotone cone, as in Iusem and Seeger's [IS2005]_ Example + 7.3 or Niezgoda's [Niez1998]_ Example 2.2:: sage: ambient_dim = ZZ.random_element(10) sage: V = VectorSpace(QQ, ambient_dim) @@ -717,7 +717,7 @@ def schur(ambient_dim=None, lattice=None): ....: x = rearrange(x) ....: y = rearrange(y) ....: return (all(sum(x[0:i]) <= sum(y[0:i]) - ....: for i in range(x.degree()-1)) + ....: for i in range(1,x.degree())) ....: and sum(x) == sum(y)) sage: S = cones.schur(ambient_dim) sage: majorized_by(V.zero(), S.random_element())