-
Notifications
You must be signed in to change notification settings - Fork 521
/
Copy pathLongest Palindromic Substring.cpp
83 lines (67 loc) · 1.7 KB
/
Longest Palindromic Substring.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
/*
Longest Palindromic Substring
============================
Given a string s, return the longest palindromic substring in s.
Example 1:
Input: s = "babad"
Output: "bab"
Note: "aba" is also a valid answer.
Example 2:
Input: s = "cbbd"
Output: "bb"
Example 3:
Input: s = "a"
Output: "a"
Example 4:
Input: s = "ac"
Output: "a"
Constraints:
1 <= s.length <= 1000
s consist of only digits and English letters (lower-case and/or upper-case),
Hint #1
How can we reuse a previously computed palindrome to compute a larger palindrome?
Hint #2
If “aba” is a palindrome, is “xabax” and palindrome? Similarly is “xabay” a palindrome?
Hint #3
Complexity based hint:
If we use brute-force and check whether for every start and end position a substring is a palindrome we have O(n^2) start - end pairs and O(n) palindromic checks. Can we reduce the time for palindromic checks to O(1) by reusing some previous computation.
*/
class Solution
{
public:
string longestPalindrome(string s)
{
if (s.size() <= 1)
return s;
int n = s.size();
vector<vector<int>> dp(n, vector<int>(n, 0));
for (int i = 0; i < n; ++i)
dp[i][i] = 1;
int Max = 1;
int start = 0;
for (int i = 0; i + 1 < n; ++i)
if (s[i] == s[i + 1])
{
dp[i][i + 1] = 1;
Max = 2;
start = i;
}
for (int gap = 2; gap < n; ++gap)
{
for (int i = 0; i + gap < n; ++i)
{
int len = gap + 1;
if (s[i] == s[i + gap] && dp[i + 1][i + gap - 1] == 1)
{
dp[i][i + gap] = 1;
if (Max < len)
{
Max = len;
start = i;
}
}
}
}
return s.substr(start, Max);
}
};