comments | difficulty | edit_url | rating | source | tags | ||||
---|---|---|---|---|---|---|---|---|---|
true |
中等 |
1603 |
第 419 场周赛 Q2 |
|
给你一棵 二叉树 的根节点 root
和一个整数k
。
返回第 k
大的 完美二叉子树 的大小,如果不存在则返回 -1
。
完美二叉树 是指所有叶子节点都在同一层级的树,且每个父节点恰有两个子节点。
示例 1:
输入: root = [5,3,6,5,2,5,7,1,8,null,null,6,8], k = 2
输出: 3
解释:
完美二叉子树的根节点在图中以黑色突出显示。它们的大小按非递增顺序排列为 [3, 3, 1, 1, 1, 1, 1, 1]
。
第 2
大的完美二叉子树的大小是 3。
示例 2:
输入: root = [1,2,3,4,5,6,7], k = 1
输出: 7
解释:
完美二叉子树的大小按非递增顺序排列为 [7, 3, 3, 1, 1, 1, 1]
。最大的完美二叉子树的大小是 7。
示例 3:
提示:
- 树中的节点数目在
[1, 2000]
范围内。 1 <= Node.val <= 2000
1 <= k <= 1024
我们定义一个函数
函数
- 如果当前节点为空,则返回
$0$ ; - 递归计算左子树和右子树的完美二叉子树的大小,分别记为
$l$ 和$r$ ; - 如果左子树和右子树的大小不相等,或者左子树和右子树的大小小于
$0$ ,则返回$-1$ ; - 计算当前节点的完美二叉子树的大小
$\textit{cnt} = l + r + 1$ ,并将$\textit{cnt}$ 添加到数组$\textit{nums}$ 中; - 返回
$\textit{cnt}$ 。
我们调用
时间复杂度
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def kthLargestPerfectSubtree(self, root: Optional[TreeNode], k: int) -> int:
def dfs(root: Optional[TreeNode]) -> int:
if root is None:
return 0
l, r = dfs(root.left), dfs(root.right)
if l < 0 or l != r:
return -1
cnt = l + r + 1
nums.append(cnt)
return cnt
nums = []
dfs(root)
if len(nums) < k:
return -1
nums.sort(reverse=True)
return nums[k - 1]
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private List<Integer> nums = new ArrayList<>();
public int kthLargestPerfectSubtree(TreeNode root, int k) {
dfs(root);
if (nums.size() < k) {
return -1;
}
nums.sort(Comparator.reverseOrder());
return nums.get(k - 1);
}
private int dfs(TreeNode root) {
if (root == null) {
return 0;
}
int l = dfs(root.left);
int r = dfs(root.right);
if (l < 0 || l != r) {
return -1;
}
int cnt = l + r + 1;
nums.add(cnt);
return cnt;
}
}
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int kthLargestPerfectSubtree(TreeNode* root, int k) {
vector<int> nums;
auto dfs = [&](auto&& dfs, TreeNode* root) -> int {
if (!root) {
return 0;
}
int l = dfs(dfs, root->left);
int r = dfs(dfs, root->right);
if (l < 0 || l != r) {
return -1;
}
int cnt = l + r + 1;
nums.push_back(cnt);
return cnt;
};
dfs(dfs, root);
if (nums.size() < k) {
return -1;
}
ranges::sort(nums, greater<int>());
return nums[k - 1];
}
};
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func kthLargestPerfectSubtree(root *TreeNode, k int) int {
nums := []int{}
var dfs func(*TreeNode) int
dfs = func(root *TreeNode) int {
if root == nil {
return 0
}
l, r := dfs(root.Left), dfs(root.Right)
if l < 0 || l != r {
return -1
}
cnt := l + r + 1
nums = append(nums, cnt)
return cnt
}
dfs(root)
if len(nums) < k {
return -1
}
sort.Sort(sort.Reverse(sort.IntSlice(nums)))
return nums[k-1]
}
/**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function kthLargestPerfectSubtree(root: TreeNode | null, k: number): number {
const nums: number[] = [];
const dfs = (root: TreeNode | null): number => {
if (!root) {
return 0;
}
const l = dfs(root.left);
const r = dfs(root.right);
if (l < 0 || l !== r) {
return -1;
}
const cnt = l + r + 1;
nums.push(cnt);
return cnt;
};
dfs(root);
if (nums.length < k) {
return -1;
}
return nums.sort((a, b) => b - a)[k - 1];
}