comments | difficulty | edit_url | rating | source | tags | |||
---|---|---|---|---|---|---|---|---|
true |
Medium |
1328 |
Biweekly Contest 86 Q2 |
|
An integer n
is strictly palindromic if, for every base b
between 2
and n - 2
(inclusive), the string representation of the integer n
in base b
is palindromic.
Given an integer n
, return true
if n
is strictly palindromic and false
otherwise.
A string is palindromic if it reads the same forward and backward.
Example 1:
Input: n = 9 Output: false Explanation: In base 2: 9 = 1001 (base 2), which is palindromic. In base 3: 9 = 100 (base 3), which is not palindromic. Therefore, 9 is not strictly palindromic so we return false. Note that in bases 4, 5, 6, and 7, n = 9 is also not palindromic.
Example 2:
Input: n = 4 Output: false Explanation: We only consider base 2: 4 = 100 (base 2), which is not palindromic. Therefore, we return false.
Constraints:
4 <= n <= 105
When
When
Therefore, we can directly return false
.
The time complexity is
class Solution:
def isStrictlyPalindromic(self, n: int) -> bool:
return False
class Solution {
public boolean isStrictlyPalindromic(int n) {
return false;
}
}
class Solution {
public:
bool isStrictlyPalindromic(int n) {
return false;
}
};
func isStrictlyPalindromic(n int) bool {
return false
}
function isStrictlyPalindromic(n: number): boolean {
return false;
}
impl Solution {
pub fn is_strictly_palindromic(n: i32) -> bool {
false
}
}
bool isStrictlyPalindromic(int n) {
return 0;
}