comments | difficulty | edit_url | rating | source | tags | |||
---|---|---|---|---|---|---|---|---|
true |
Hard |
2070 |
Weekly Contest 234 Q4 |
|
You are given a positive integer primeFactors
. You are asked to construct a positive integer n
that satisfies the following conditions:
- The number of prime factors of
n
(not necessarily distinct) is at mostprimeFactors
. - The number of nice divisors of
n
is maximized. Note that a divisor ofn
is nice if it is divisible by every prime factor ofn
. For example, ifn = 12
, then its prime factors are[2,2,3]
, then6
and12
are nice divisors, while3
and4
are not.
Return the number of nice divisors of n
. Since that number can be too large, return it modulo 109 + 7
.
Note that a prime number is a natural number greater than 1
that is not a product of two smaller natural numbers. The prime factors of a number n
is a list of prime numbers such that their product equals n
.
Example 1:
Input: primeFactors = 5 Output: 6 Explanation: 200 is a valid value of n. It has 5 prime factors: [2,2,2,5,5], and it has 6 nice divisors: [10,20,40,50,100,200]. There is not other value of n that has at most 5 prime factors and more nice divisors.
Example 2:
Input: primeFactors = 8 Output: 18
Constraints:
<li><code>1 <= primeFactors <= 10<sup>9</sup></code></li>
We can factorize primeFactors
, we have
According to the problem description, we know that a good factor of primeFactors
into primeFactors
into the product of several integers to maximize the product.
Next, we just need to discuss different cases.
- If
$primeFactors \lt 4$ , then directly returnprimeFactors
. - If
$primeFactors$ is a multiple of$3$ , then we splitprimeFactors
into multiples of$3$ , i.e.,$3^{\frac{primeFactors}{3}}$ . - If
$primeFactors$ modulo$3$ equals$1$ , then we splitprimeFactors
into$\frac{primeFactors}{3} - 1$ multiples of$3$ , and then multiply by$4$ , i.e.,$3^{\frac{primeFactors}{3} - 1} \times 4$ . - If
$primeFactors$ modulo$3$ equals$2$ , then we splitprimeFactors
into$\frac{primeFactors}{3}$ multiples of$3$ , and then multiply by$2$ , i.e.,$3^{\frac{primeFactors}{3}} \times 2$ .
In the above process, we use fast power to calculate the modulus.
The time complexity is
class Solution:
def maxNiceDivisors(self, primeFactors: int) -> int:
mod = 10**9 + 7
if primeFactors < 4:
return primeFactors
if primeFactors % 3 == 0:
return pow(3, primeFactors // 3, mod) % mod
if primeFactors % 3 == 1:
return 4 * pow(3, primeFactors // 3 - 1, mod) % mod
return 2 * pow(3, primeFactors // 3, mod) % mod
class Solution {
private final int mod = (int) 1e9 + 7;
public int maxNiceDivisors(int primeFactors) {
if (primeFactors < 4) {
return primeFactors;
}
if (primeFactors % 3 == 0) {
return qpow(3, primeFactors / 3);
}
if (primeFactors % 3 == 1) {
return (int) (4L * qpow(3, primeFactors / 3 - 1) % mod);
}
return 2 * qpow(3, primeFactors / 3) % mod;
}
private int qpow(long a, long n) {
long ans = 1;
for (; n > 0; n >>= 1) {
if ((n & 1) == 1) {
ans = ans * a % mod;
}
a = a * a % mod;
}
return (int) ans;
}
}
class Solution {
public:
int maxNiceDivisors(int primeFactors) {
if (primeFactors < 4) {
return primeFactors;
}
const int mod = 1e9 + 7;
auto qpow = [&](long long a, long long n) {
long long ans = 1;
for (; n; n >>= 1) {
if (n & 1) {
ans = ans * a % mod;
}
a = a * a % mod;
}
return (int) ans;
};
if (primeFactors % 3 == 0) {
return qpow(3, primeFactors / 3);
}
if (primeFactors % 3 == 1) {
return qpow(3, primeFactors / 3 - 1) * 4L % mod;
}
return qpow(3, primeFactors / 3) * 2 % mod;
}
};
func maxNiceDivisors(primeFactors int) int {
if primeFactors < 4 {
return primeFactors
}
const mod = 1e9 + 7
qpow := func(a, n int) int {
ans := 1
for ; n > 0; n >>= 1 {
if n&1 == 1 {
ans = ans * a % mod
}
a = a * a % mod
}
return ans
}
if primeFactors%3 == 0 {
return qpow(3, primeFactors/3)
}
if primeFactors%3 == 1 {
return qpow(3, primeFactors/3-1) * 4 % mod
}
return qpow(3, primeFactors/3) * 2 % mod
}
/**
* @param {number} primeFactors
* @return {number}
*/
var maxNiceDivisors = function (primeFactors) {
if (primeFactors < 4) {
return primeFactors;
}
const mod = 1e9 + 7;
const qpow = (a, n) => {
let ans = 1;
for (; n; n >>= 1) {
if (n & 1) {
ans = Number((BigInt(ans) * BigInt(a)) % BigInt(mod));
}
a = Number((BigInt(a) * BigInt(a)) % BigInt(mod));
}
return ans;
};
const k = Math.floor(primeFactors / 3);
if (primeFactors % 3 === 0) {
return qpow(3, k);
}
if (primeFactors % 3 === 1) {
return (4 * qpow(3, k - 1)) % mod;
}
return (2 * qpow(3, k)) % mod;
};