comments | difficulty | edit_url | tags | |||||
---|---|---|---|---|---|---|---|---|
true |
Medium |
|
Given a circular integer array nums
of length n
, return the maximum possible sum of a non-empty subarray of nums
.
A circular array means the end of the array connects to the beginning of the array. Formally, the next element of nums[i]
is nums[(i + 1) % n]
and the previous element of nums[i]
is nums[(i - 1 + n) % n]
.
A subarray may only include each element of the fixed buffer nums
at most once. Formally, for a subarray nums[i], nums[i + 1], ..., nums[j]
, there does not exist i <= k1
, k2 <= j
with k1 % n == k2 % n
.
Example 1:
Input: nums = [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3.
Example 2:
Input: nums = [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10.
Example 3:
Input: nums = [-3,-2,-3] Output: -2 Explanation: Subarray [-2] has maximum sum -2.
Constraints:
n == nums.length
1 <= n <= 3 * 104
-3 * 104 <= nums[i] <= 3 * 104
The maximum sum of a circular subarray can be divided into two cases:
- Case 1: The subarray with the maximum sum does not include the circular part, which is the ordinary maximum subarray sum;
- Case 2: The subarray with the maximum sum includes the circular part, which can be transformed into: the total sum of the array minus the minimum subarray sum.
Therefore, we maintain the following variables:
- The minimum prefix sum
$pmi$ , initially$0$ ; - The maximum prefix sum
$pmx$ , initially$-\infty$ ; - The prefix sum
$s$ , initially$0$ ; - The minimum subarray sum
$smi$ , initially$\infty$ ; - The answer
$ans$ , initially$-\infty$ .
Next, we only need to traverse the array
- Update the prefix sum
$s = s + x$ ; - Update the answer
$ans = \max(ans, s - pmi)$ , which is the answer for Case 1 (the prefix sum$s$ minus the minimum prefix sum$pmi$ can give the maximum subarray sum); - Update
$smi = \min(smi, s - pmx)$ , which is the minimum subarray sum for Case 2; - Update
$pmi = \min(pmi, s)$ , which is the minimum prefix sum; - Update
$pmx = \max(pmx, s)$ , which is the maximum prefix sum.
After the traversal, we return the maximum value of
The time complexity is
class Solution:
def maxSubarraySumCircular(self, nums: List[int]) -> int:
pmi, pmx = 0, -inf
ans, s, smi = -inf, 0, inf
for x in nums:
s += x
ans = max(ans, s - pmi)
smi = min(smi, s - pmx)
pmi = min(pmi, s)
pmx = max(pmx, s)
return max(ans, s - smi)
class Solution {
public int maxSubarraySumCircular(int[] nums) {
final int inf = 1 << 30;
int pmi = 0, pmx = -inf;
int ans = -inf, s = 0, smi = inf;
for (int x : nums) {
s += x;
ans = Math.max(ans, s - pmi);
smi = Math.min(smi, s - pmx);
pmi = Math.min(pmi, s);
pmx = Math.max(pmx, s);
}
return Math.max(ans, s - smi);
}
}
class Solution {
public:
int maxSubarraySumCircular(vector<int>& nums) {
const int inf = 1 << 30;
int pmi = 0, pmx = -inf;
int ans = -inf, s = 0, smi = inf;
for (int x : nums) {
s += x;
ans = max(ans, s - pmi);
smi = min(smi, s - pmx);
pmi = min(pmi, s);
pmx = max(pmx, s);
}
return max(ans, s - smi);
}
};
func maxSubarraySumCircular(nums []int) int {
const inf = 1 << 30
pmi, pmx := 0, -inf
ans, s, smi := -inf, 0, inf
for _, x := range nums {
s += x
ans = max(ans, s-pmi)
smi = min(smi, s-pmx)
pmi = min(pmi, s)
pmx = max(pmx, s)
}
return max(ans, s-smi)
}
function maxSubarraySumCircular(nums: number[]): number {
let [pmi, pmx] = [0, -Infinity];
let [ans, s, smi] = [-Infinity, 0, Infinity];
for (const x of nums) {
s += x;
ans = Math.max(ans, s - pmi);
smi = Math.min(smi, s - pmx);
pmi = Math.min(pmi, s);
pmx = Math.max(pmx, s);
}
return Math.max(ans, s - smi);
}