Skip to content

Latest commit

 

History

History
225 lines (172 loc) · 5.38 KB

File metadata and controls

225 lines (172 loc) · 5.38 KB
comments edit_url
true

题目描述

给定一个有 n 个节点的有向无环图,用二维数组 graph 表示,请找到所有从 0 到 n-1 的路径并输出(不要求按顺序)。

graph 的第 i 个数组中的单元都表示有向图中 i 号节点所能到达的下一些结点(译者注:有向图是有方向的,即规定了 a→b 你就不能从 b→a ),若为空,就是没有下一个节点了。

 

示例 1:

输入:graph = [[1,2],[3],[3],[]]
输出:[[0,1,3],[0,2,3]]
解释:有两条路径 0 -> 1 -> 3 和 0 -> 2 -> 3

示例 2:

输入:graph = [[4,3,1],[3,2,4],[3],[4],[]]
输出:[[0,4],[0,3,4],[0,1,3,4],[0,1,2,3,4],[0,1,4]]

示例 3:

输入:graph = [[1],[]]
输出:[[0,1]]

示例 4:

输入:graph = [[1,2,3],[2],[3],[]]
输出:[[0,1,2,3],[0,2,3],[0,3]]

示例 5:

输入:graph = [[1,3],[2],[3],[]]
输出:[[0,1,2,3],[0,3]]

 

提示:

  • n == graph.length
  • 2 <= n <= 15
  • 0 <= graph[i][j] < n
  • graph[i][j] != i 
  • 保证输入为有向无环图 (GAD)

 

注意:本题与主站 797 题相同:https://leetcode.cn/problems/all-paths-from-source-to-target/

解法

方法一

Python3

class Solution:
    def allPathsSourceTarget(self, graph: List[List[int]]) -> List[List[int]]:
        ans = []

        def dfs(i, path):
            if i == len(graph) - 1:
                ans.append(path.copy())
                return
            for j in graph[i]:
                path.append(j)
                dfs(j, path)
                path.pop(-1)

        dfs(0, [0])
        return ans

Java

class Solution {
    private List<List<Integer>> ans;
    private int[][] graph;

    public List<List<Integer>> allPathsSourceTarget(int[][] graph) {
        ans = new ArrayList<>();
        this.graph = graph;
        List<Integer> path = new ArrayList<>();
        path.add(0);
        dfs(0, path);
        return ans;
    }

    private void dfs(int i, List<Integer> path) {
        if (i == graph.length - 1) {
            ans.add(new ArrayList<>(path));
            return;
        }
        for (int j : graph[i]) {
            path.add(j);
            dfs(j, path);
            path.remove(path.size() - 1);
        }
    }
}

C++

class Solution {
public:
    vector<vector<int>> graph;
    vector<vector<int>> ans;

    vector<vector<int>> allPathsSourceTarget(vector<vector<int>>& graph) {
        this->graph = graph;
        vector<int> path;
        path.push_back(0);
        dfs(0, path);
        return ans;
    }

    void dfs(int i, vector<int> path) {
        if (i == graph.size() - 1) {
            ans.push_back(path);
            return;
        }
        for (int j : graph[i]) {
            path.push_back(j);
            dfs(j, path);
            path.pop_back();
        }
    }
};

Go

func allPathsSourceTarget(graph [][]int) [][]int {
	var path []int
	path = append(path, 0)
	var ans [][]int

	var dfs func(i int)
	dfs = func(i int) {
		if i == len(graph)-1 {
			ans = append(ans, append([]int(nil), path...))
			return
		}
		for _, j := range graph[i] {
			path = append(path, j)
			dfs(j)
			path = path[:len(path)-1]
		}
	}

	dfs(0)
	return ans
}

Swift

class Solution {
    private var results = [[Int]]()
    private var graph = [[Int]]()

    func allPathsSourceTarget(_ graph: [[Int]]) -> [[Int]] {
        self.graph = graph
        var path = [0]
        dfs(0, &path)
        return results
    }

    private func dfs(_ node: Int, _ path: inout [Int]) {
        if node == graph.count - 1 {
            results.append(Array(path))
            return
        }

        for next in graph[node] {
            path.append(next)
            dfs(next, &path)
            path.removeLast()
        }
    }
}