Skip to content

LLVM ERROR: Invalid encoding #82445

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
davidspies opened this issue Feb 23, 2021 · 1 comment
Open

LLVM ERROR: Invalid encoding #82445

davidspies opened this issue Feb 23, 2021 · 1 comment
Labels
A-LLVM Area: Code generation parts specific to LLVM. Both correctness bugs and optimization-related issues. C-bug Category: This is a bug. T-compiler Relevant to the compiler team, which will review and decide on the PR/issue.

Comments

@davidspies
Copy link

davidspies commented Feb 23, 2021

The code is the same as in this issue #82406
but I added --release to the command-line arguments

$ cargo build --release --verbose
       Fresh lazy_fields v0.1.0 (https://github.com/davidspies/lazy-fields?branch=main#79d2e45d)
       Fresh dc2 v0.1.0 (https://github.com/davidspies/dc2?branch=main#9e1fb2ea)
   Compiling boolsatr v0.1.0 (/home/david/projects/boolsatr)
     Running `rustc --crate-name boolsatr --edition=2018 src/main.rs --error-format=json --json=diagnostic-rendered-ansi --crate-type bin --emit=dep-info,link -C opt-level=3 -C embed-bitcode=no -C metadata=c54a8525119404e2 -C extra-filename=-c54a8525119404e2 --out-dir /home/david/projects/boolsatr/target/release/deps -L dependency=/home/david/projects/boolsatr/target/release/deps --extern dc2=/home/david/projects/boolsatr/target/release/deps/libdc2-3565d5356584d424.rlib --extern lazy_fields=/home/david/projects/boolsatr/target/release/deps/liblazy_fields-a3780a936ab6c673.rlib`
warning: variant is never constructed: `Leaf`
<...>
LLVM ERROR: Invalid encoding
error: could not compile `boolsatr`

Caused by:
  process didn't exit successfully: `rustc --crate-name boolsatr --edition=2018 src/main.rs --error-format=json --json=diagnostic-rendered-ansi --crate-type bin --emit=dep-info,link -C opt-level=3 -C embed-bitcode=no -C metadata=c54a8525119404e2 -C extra-filename=-c54a8525119404e2 --out-dir /home/david/projects/boolsatr/target/release/deps -L dependency=/home/david/projects/boolsatr/target/release/deps --extern dc2=/home/david/projects/boolsatr/target/release/deps/libdc2-3565d5356584d424.rlib --extern lazy_fields=/home/david/projects/boolsatr/target/release/deps/liblazy_fields-a3780a936ab6c673.rlib` (exit code: 101)

I tried this code:

Code
mod collection_ops {
    use crate::tuple::{snd, swap};
    use dc2::{key::Key, monoid::Monoid, Collection, Op, Relation};
    use std::ops::Mul;

    pub trait SemiJoinOn<'a, D1: Key, D2, R: Monoid> {
        fn semijoin_on<F: Fn(&D1) -> D2 + 'static, C2: Op<D = D2, R = R>>(
            self,
            other: Relation<'a, C2>,
            f: F,
        ) -> Collection<'a, D1, R>;
    }

    impl<'a, D1: Key, D2: Key, R: Monoid + Mul<R, Output = R>, C: Op<D = D1, R = R>>
        SemiJoinOn<'a, D1, D2, R> for Relation<'a, C>
    {
        fn semijoin_on<F: Fn(&D1) -> D2 + 'static, C2: Op<D = D2, R = R>>(
            self,
            other: Relation<'a, C2>,
            f: F,
        ) -> Collection<'a, D1, R> {
            self.map(move |val| (f(&val), val))
                .semijoin(other)
                .map(snd)
                .collect()
        }
    }

    pub trait SemiJoinOnSnd<'a, D1: Key, D2: Key, R: Monoid> {
        fn semijoin_on_snd<C2: Op<D = D2, R = R>>(
            self,
            other: Relation<'a, C2>,
        ) -> Collection<'a, (D1, D2), R>;
    }

    impl<'a, D1: Key, D2: Key, R: Monoid + Mul<R, Output = R>, C: Op<D = (D1, D2), R = R>>
        SemiJoinOnSnd<'a, D1, D2, R> for Relation<'a, C>
    {
        fn semijoin_on_snd<C2: Op<D = D2, R = R>>(
            self,
            other: Relation<'a, C2>,
        ) -> Collection<'a, (D1, D2), R> {
            self.map(swap).semijoin(other).map(swap).collect()
        }
    }
}
mod ops {
    use std::hash::{Hash, Hasher};
    use std::ops::Deref;
    use std::rc::Rc;

    #[derive(Debug)]
    pub struct RcRaw<T>(pub Rc<T>);

    impl<T> Clone for RcRaw<T> {
        fn clone(&self) -> Self {
            RcRaw(Rc::clone(&self.0))
        }
    }

    impl<T> PartialEq for RcRaw<T> {
        fn eq(&self, other: &Self) -> bool {
            Rc::ptr_eq(&self.0, &other.0)
        }
    }

    impl<T> Eq for RcRaw<T> {}

    impl<T> Hash for RcRaw<T> {
        fn hash<H: Hasher>(&self, state: &mut H) {
            Rc::as_ptr(&self.0).hash(state);
        }
    }

    impl<T> Deref for RcRaw<T> {
        type Target = T;
        fn deref(&self) -> &T {
            Rc::deref(&self.0)
        }
    }
}
mod primitives {
    use std::cmp::Ordering;
    use std::ops::Not;
    #[derive(Debug, PartialEq, Eq, Clone, Copy, Hash)]
    pub struct Assig(isize);
    #[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Hash)]
    pub struct Var(isize);
    pub type MicroLevel = usize;
    impl Assig {
        pub fn var(self) -> Var {
            Var(self.0.abs())
        }
    }
    impl Not for Assig {
        type Output = Assig;
        fn not(self) -> Self::Output {
            Assig(-self.0)
        }
    }
    impl PartialOrd for Assig {
        fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
            Some(self.cmp(other))
        }
    }
    impl Ord for Assig {
        fn cmp(&self, other: &Self) -> Ordering {
            match self.0.abs().cmp(&other.0.abs()) {
                Ordering::Equal => self.0.cmp(&other.0),
                res => res,
            }
        }
    }
    #[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Hash)]
    pub struct RuleIndex(usize);
}
mod program {
    use crate::primitives::{Assig, RuleIndex, Var};
    use dc2::Collection;

    #[derive(Clone)]
    pub struct RulesCollections {
        pub rule_index: Collection<'static, RuleIndex>,
        pub rule: Collection<'static, (RuleIndex, Assig)>,
        pub vars: Collection<'static, Var>,
    }
}
mod solver {
    mod binary {
        use super::learnt::RefRule;
        use super::primitives::DecisionLevel;
        use super::SolverCollections;
        use crate::collection_ops::{SemiJoinOn, SemiJoinOnSnd};
        use crate::primitives::{Assig, RuleIndex, Var};
        use crate::tuple::{fst, snd, swap};
        use dc2::key::Key;
        use dc2::map::{AssertOnes, VecMap};
        use dc2::{
            Arrangement, Collection, CreationContext, Input, MapMapArrangement, MappingArrangement,
        };
        use std::collections::hash_map::DefaultHasher;
        use std::collections::{BTreeMap, HashMap};
        use std::hash::{Hash, Hasher};
        pub struct Binary {
            pub binary_input: Input<((Assig, Assig), (RefRule, DecisionLevel))>,
            pub binary_output: MapMapArrangement<Assig, (Assig, Path)>,
            pub binary_by_level: MapMapArrangement<DecisionLevel, ((Assig, Assig), RefRule)>,
            pub closure: MappingArrangement<(Assig, Assig), usize>,
            pub self_implied: Arrangement<
                (usize, (Var, Assig)),
                isize,
                BTreeMap<usize, HashMap<Var, HashMap<Assig, isize>>>,
            >,
            pub other_un_impls: MapMapArrangement<Var, (Assig, RuleIndex)>,
            pub other_bin_impls: MapMapArrangement<(Assig, Assig), RuleIndex>,
        }
        #[derive(Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
        pub enum Path {
            Direct(RuleIndex),
            Indirect(RefRule),
        }
        impl SolverCollections<'_> {
            pub fn make_binary(&self) -> Binary {
                let active = self.active.get();
                let rule_sizes = self.rule_sizes.get().clone();
                let binary_rule_inds = rule_sizes
                    .filter(|&(_key, count)| count == 2)
                    .map(fst)
                    .named("binary_rule_inds");
                let binary_rules = active
                    .rule
                    .clone()
                    .semijoin(binary_rule_inds)
                    .reduce(|_i, xs: &HashMap<Assig, isize>| {
                        let mut iter = xs.iter().assert_ones();
                        let &x = iter.next().expect("No assigs");
                        let &y = iter.next().expect("Only 1 assig");
                        assert!(iter.next().is_none(), "More than 2 assigs");
                        VecMap::new(vec![((!x, y), 1), ((!y, x), 1)])
                    })
                    .map(|(i, imp)| (imp, Path::Direct(i)))
                    .named("binary_rules");
                let (binary_input, binary_manual) = self.context.borrow().create_input();
                let binary_manual = binary_manual.split().named("binary_manual");
                let binary_by_level: MapMapArrangement<DecisionLevel, ((Assig, Assig), RefRule)> =
                    binary_manual
                        .clone()
                        .map(|(xy, (i, dl))| (dl, (xy, i)))
                        .dynamic()
                        .named("binary_by_level")
                        .get_arrangement(&self.context.borrow());
                let verts = self.rem_lits.get();
                let binary = binary_rules
                    .concat(
                        binary_manual
                            .semijoin_on(verts.clone(), |&((x, _), _)| x)
                            .semijoin_on(verts.clone(), |&((_, y), _)| y)
                            .map(|(xy, (i, _))| (xy, Path::Indirect(i))),
                    )
                    .split()
                    .named("binary");
                let closure_raw = transitive_closure(
                    &mut self.context.borrow_mut(),
                    verts.clone(),
                    binary.clone().map(fst).collect(),
                )
                .named("closure_raw");
                let (closure, closure_output) =
                    closure_raw.assert_1to1_with_output(&self.context.borrow());
                let closure = closure.split().named("closure");
                let self_implied = closure
                    .clone()
                    .flat_map(|((x, y), d)| {
                        if y == !x {
                            Some((d, (y.var(), y)))
                        } else {
                            None
                        }
                    })
                    .dynamic()
                    .named("self_implied");
                let rule_sizes = self.rule_sizes.get();
                let chosen_rule_index = rule_sizes
                    .clone()
                    .flat_map(|(i, rs)| if rs >= 3 { Some(i) } else { None })
                    .named("chosen_rule_index");
                let chosen_rule = active
                    .rule
                    .clone()
                    .semijoin(chosen_rule_index)
                    .split()
                    .named("chosen_rule");
                let pairings = chosen_rule
                    .clone()
                    .map(move |(i, x)| {
                        let mut h = DefaultHasher::new();
                        (i, x).hash(&mut h);
                        (i, (h.finish(), x))
                    })
                    .reduce(|_, xs: &BTreeMap<(u64, Assig), isize>| {
                        let mut iter = xs.iter().assert_ones();
                        let &(_, x) = iter.next().expect("Empty rule");
                        let &(_, y) = iter.next().expect("Unary rule");
                        let &(_, z) = iter.next().expect("Binary rule");
                        VecMap::new(vec![((x, y), 1), ((x, z), 1), ((y, z), 1)])
                    })
                    .split()
                    .named("pairings");
                let implied = closure.map(fst).split().named("implied");
                let both_implied = pairings
                    .clone()
                    .map(snd)
                    .triangles(implied.clone(), implied.clone())
                    .map(|(x, y, z)| ((x, y), z))
                    .named("both_implied");
                let candidates = pairings
                    .map(swap)
                    .join(both_implied)
                    .map(snd)
                    .distinct()
                    .named("candidates");
                let impl_count = chosen_rule
                    .clone()
                    .join(candidates)
                    .dynamic() // TODO Why does removing this cause the compiler to hang?
                    .semijoin_on_snd(implied.clone())
                    .map(|(i, (_, y))| (i, y))
                    .counts()
                    .map(|((i, y), c)| {
                        assert!(c >= 2);
                        (i, (y, c))
                    })
                    .named("impl_count");
                let critical = impl_count
                    .join(rule_sizes.clone())
                    .flat_map(|(i, ((y, c), rs))| if c >= rs - 1 { Some((i, y)) } else { None })
                    .split()
                    .named("critical");
                let new_binary = chosen_rule
                    .join(critical.clone())
                    .map(swap)
                    .antijoin(implied.clone())
                    .map(|((x, y), i)| ((!x, y), i))
                    .split()
                    .named("new_binary");
                let new_unary = critical
                    .map(swap)
                    .concat(new_binary.clone().map(|((_, y), i)| (y, i)).negate())
                    .named("new_unary");
                let context = self.context.borrow();
                Binary {
                    binary_input,
                    binary_output: binary
                        .map(|((x, y), i)| (x, (y, i)))
                        .dynamic()
                        .named("binary_output")
                        .get_arrangement(&context),
                    binary_by_level,
                    closure: Box::new(closure_output),
                    self_implied: self_implied.get_arrangement(&context),
                    other_un_impls: new_unary
                        .map(|(x, i)| (x.var(), (x, i)))
                        .dynamic()
                        .named("other_un_impls")
                        .get_arrangement(&context),
                    other_bin_impls: new_binary
                        .antijoin(implied)
                        .dynamic()
                        .named("other_bin_impls")
                        .get_arrangement(&context),
                }
            }
        }
        fn transitive_closure<T: Key>(
            context: &mut CreationContext,
            verts: Collection<T>,
            edges: Collection<(T, T)>,
        ) -> Collection<'static, ((T, T), usize)> {
            let mut subcontext = context.subgraph::<usize>();
            let (var, c) = subcontext.variable();
            let c = c.named("c");
            let nextdists = verts
                .map(|x| ((x.clone(), x), 0))
                .enter()
                .concat(
                    c.map(|(d, (x, y))| (y, (x, d)))
                        .join(edges.enter())
                        .map(|(_, ((x, d), y))| ((x, y), d + 1)),
                )
                .group_min()
                .split()
                .named("nextdists");
            var.set(nextdists.clone().map(swap));
            nextdists.leave(&subcontext.finish()).collect()
        }
    }
    pub mod collections {
        use super::Binary;
        use crate::primitives::{Assig, RuleIndex};
        use crate::program::RulesCollections;
        use dc2::{Collection, CreationContext};
        use lazy_fields::{self, with_lazy_fields, LazyField};
        use std::cell::RefCell;
        type PField<'a, T> = LazyField<'a, SolverCollections<'a>, T>;
        type RuleSizesCollection = Collection<'static, (RuleIndex, isize)>;
        pub struct SolverCollections<'a> {
            pub context: RefCell<CreationContext>,
            pub all_lits: PField<'a, Collection<'static, Assig>>,
            pub base: PField<'a, RulesCollections>,
            pub active_base: PField<'a, RulesCollections>,
            pub rem_lits: PField<'a, Collection<'static, Assig>>,
            pub active: PField<'a, RulesCollections>,
            pub rule_sizes: PField<'a, RuleSizesCollection>,
            pub binary: PField<'a, Binary>,
        }
        impl<'a> SolverCollections<'a> {
            pub fn new() -> Self {
                with_lazy_fields(
                    move |r: &mut lazy_fields::Register<'a, SolverCollections<'a>>| {
                        SolverCollections {
                            context: RefCell::new(CreationContext::new()),
                            base: r.field(SolverCollections::make_base),
                            all_lits: r.field(SolverCollections::make_all_lits),
                            active_base: r.field(SolverCollections::make_active_base),
                            rem_lits: r.field(SolverCollections::make_rem_lits),
                            active: r.field(SolverCollections::make_active),
                            rule_sizes: r.field(SolverCollections::make_rule_sizes),
                            binary: r.field(SolverCollections::make_binary),
                        }
                    },
                )
            }
            fn make_all_lits(&self) -> Collection<'static, Assig> {
                unimplemented!()
            }
            fn make_rem_lits(&self) -> Collection<'static, Assig> {
                unimplemented!()
            }
            fn make_base(&self) -> RulesCollections {
                unimplemented!()
            }
            fn make_active_base(&self) -> RulesCollections {
                unimplemented!()
            }
            fn make_active(&self) -> RulesCollections {
                unimplemented!()
            }
            fn make_rule_sizes(&self) -> RuleSizesCollection {
                unimplemented!()
            }
        }
    }
    mod learnt {
        use crate::ops::RcRaw;
        use crate::primitives::{Assig, RuleIndex};
        use std::cell::RefCell;
        use std::cmp::Ordering;
        use std::collections::HashMap;
        #[derive(Clone, PartialEq, Eq, Hash, Debug)]
        pub struct RefRule(RcRaw<RefCell<RuleBuilder>>);
        #[derive(Debug)]
        enum RuleBuilder {
            Leaf(RuleIndex),
            Node(RefRule, HashMap<Assig, RefRule>),
        }
        impl PartialOrd for RefRule {
            fn partial_cmp(&self, _other: &Self) -> Option<Ordering> {
                unimplemented!()
            }
        }
        impl Ord for RefRule {
            fn cmp(&self, _other: &Self) -> Ordering {
                unimplemented!()
            }
        }
    }
    mod primitives {
        use super::learnt::RefRule;
        use crate::primitives::{MicroLevel, RuleIndex};
        pub type DecisionLevel = usize;
        #[derive(Clone, Debug, PartialEq, Eq, Hash)]
        pub struct AssignInfo {
            pub decision_level: DecisionLevel,
            pub cause: Cause,
            pub micro_level: MicroLevel,
        }
        #[derive(Clone, Debug, PartialEq, Eq, Hash)]
        pub enum Cause {
            Decision,
            InferredFrom(RuleIndex),
            Pure,
            BinaryChains(RefRule),
        }
    }
    use self::binary::Binary;
    use self::collections::SolverCollections;
}
mod tuple {
    pub fn fst<A, B>((a, _): (A, B)) -> A {
        a
    }
    pub fn snd<A, B>((_, b): (A, B)) -> B {
        b
    }
    pub fn swap<A, B>((a, b): (A, B)) -> (B, A) {
        (b, a)
    }
}

use self::solver::collections::SolverCollections;

fn main() {
    SolverCollections::new();
}

Meta

rustc --version --verbose:

rustc 1.52.0-nightly (07194ffcd 2021-02-10)
binary: rustc
commit-hash: 07194ffcd25b0871ce560b9f702e52db27ac9f77
commit-date: 2021-02-10
host: x86_64-unknown-linux-gnu
release: 1.52.0-nightly
LLVM version: 11.0.1
Backtrace

RUST_BACKTRACE=1 didn't produce any backtrace

@davidspies davidspies added the C-bug Category: This is a bug. label Feb 23, 2021
@tgnottingham
Copy link
Contributor

As mentioned in #82406, a workaround is to use -Z symbol-mangling-version=v0, and disable LTO in Cargo.toml:

[profile.release]
lto = "off"

@workingjubilee workingjubilee added the A-LLVM Area: Code generation parts specific to LLVM. Both correctness bugs and optimization-related issues. label Mar 4, 2023
@Noratrieb Noratrieb added the T-compiler Relevant to the compiler team, which will review and decide on the PR/issue. label Apr 5, 2023
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
A-LLVM Area: Code generation parts specific to LLVM. Both correctness bugs and optimization-related issues. C-bug Category: This is a bug. T-compiler Relevant to the compiler team, which will review and decide on the PR/issue.
Projects
None yet
Development

No branches or pull requests

4 participants