-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpca.py
153 lines (128 loc) · 4.69 KB
/
pca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import matplotlib
matplotlib.use('Agg')
from natsort import natsorted, ns
import glob
import pickle
import numpy as np
import pandas as pd
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(color_codes=True)
#!pip install ipyvolume
from mpl_toolkits.mplot3d import Axes3D
#import ipyvolume.pylab as p3
def iter_pca(md):
import pickle
with open('pickles/qi3.p', 'rb') as f:
mdf1 = pickle.load(f)
ass = mdf1.analogsignals[0]
lens = np.shape(ass.as_array()[:,1])[0]
end_floor = np.floor(float(mdf1.t_stop))
dt = float(mdf1.t_stop) % end_floor
t_axis = np.arange(float(mdf1.t_start), float(mdf1.t_stop), dt)
the_last_trace = mdf1.analogsignals[0].as_array()[:,121]
plt.figure()
plt.clf()
cleaned = []
data = np.array(mdf1.analogsignals[0].as_array().T)
print(data)
for i,vm in enumerate(data):
if np.max(vm) > 900.0 or np.min(vm) < - 900.0:
pass
else:
plt.plot(ass.times,vm)#,label='neuron identifier '+str(i)))
cleaned.append(vm)
#vm = s#.as_array()[:,i]
print(len(cleaned))
plt.title('neuron $V_{m}$')
plt.xlabel('$ms$')
plt.ylabel('$mV$')
plt.savefig(str('un_rotated_')+'analogsignals'+'.png');
plt.close()
lens = len(cleaned)
pca = PCA()
data = np.array(cleaned)#np.array(mdf1.analogsignals[0].as_array().T)
pca = PCA(n_components=lens).fit(data)
data_projected = np.dot(pca.components_,data.T).T
print(data_projected,'data')
print(pca.components_,'component direction vectors')
def report_mean_var(data):
for i in range(data.shape[1]):
column = data[:,i]
print("Dimension %d has mean %.2g and variance %.3g" % \
(i+1,column.mean(),column.var()))
def variance_explained(df,pca):
#pca.fit(df.values)
n_components = min(*df.shape)
if pca.n_components:
n_components = min(n_components,pca.n_components)
for i in range(n_components):
print("PC %d explains %.3g%% of the variance" % (i+1,100*pca.explained_variance_ratio_[i]))
signals = np.dot(data.T,data_projected)
signals = signals.T
plt.figure()
plt.clf()
for i,s in enumerate(signals):
vm = s
if i < 3:
plt.plot(t_axis[0:-1],vm,label='PCA component: '+str(i))
else:
pass
plt.title('$V_{m}$ Projections from PCA')
plt.xlabel('$ms$')
plt.ylabel('$mV$')
plt.legend(loc="upper left")
plt.savefig(str('projections_weight_value_')+str(md)+'analogsignals'+'.png');
plt.close()
def annotate_scatter(ax,df_transformed,df):
for i, txt in enumerate(df.index):
x_loc = df_transformed['PC 1'].iloc[i]
y_loc = df_transformed['PC 2'].iloc[i]
ax.annotate(txt, (x_loc,y_loc), fontsize=9)
#for i, text in enumerate(df.index):
# ax.text(df['PC 1'].iloc[i],df['PC 2'].iloc[i], text)
def plot_transformed_data(pca,df_transformed,df,figsize=None):
plt.clf()
#pca.fit(df.values)
n_components = min(*df.shape)
if pca.n_components:
n_components = min(n_components,pca.n_components)
pca_df = pd.DataFrame(pca.transform(df.values),
index=df.index,
columns=['PC %d' % (i+1) for i in range(n_components)])
ax = pca_df.plot.scatter('PC 1','PC 2',figsize=figsize)
#ax = mds_df.plot.scatter(x='PC 1',y='PC 2',figsize=(12,12))
#annotate_scatter(ax,mds_df)
annotate_scatter(ax,pca_df,df_transformed)
plt.savefig('pca_wave_transformed.png')
plt.close()
#plot_transformed_data(pca,pd.DataFrame(data),pd.DataFrame(data_rotated))
def plot3d(df):
plt.clf()
data = df.values
fig = plt.figure(figsize=(6,6))
ax = fig.add_subplot(111, projection='3d')
ax.scatter(*data[:,0:3].T)
minn,maxx = data.min(),data.max()
ax.set_xlim(minn,maxx)
ax.set_ylim(minn,maxx)
ax.set_zlim(minn,maxx)
ax.set_xlabel(df.columns[0],labelpad=10)
ax.set_ylabel(df.columns[1],labelpad=10)
ax.set_zlabel(df.columns[2],labelpad=10)
ax.dist = 12
plt.tight_layout()
plt.savefig('pca_scatter.png')
plt.close()
print(pca.components_.shape_,'components_')
iter_distances = natsorted(glob.glob('pickles/qi*.p'))
mdfloop = {}
for k,i in enumerate(iter_distances):
with open(i, 'rb') as f:
from neo.core import analogsignal
mdfloop[k] = pickle.load(f)
for k,mdf1 in mdfloop.items():
print(mdf1,k)
titems = [ (k,mdf1) for k,mdf1 in mdfloop.items() ]
_ = list(map(iter_pca,titems));