Skip to content

Commit ff56b3c

Browse files
author
JohnMark Taylor
committed
Trying all the framed RSA options with no covariance adjustment: does it actually improve identification performance?
1 parent 93232b0 commit ff56b3c

File tree

1 file changed

+5
-5
lines changed

1 file changed

+5
-5
lines changed

src/rsatoolbox/rdm/compare.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -340,12 +340,12 @@ def _cosine_cov_weighted_slow(vector1, vector2, frozen_inds=[], sigma_k=None, na
340340
n_cond = _get_n_from_reduced_vectors(vector1)
341341
v = _get_v(n_cond, sigma_k)
342342
# Now adjust v to account for any frozen patterns.
343-
v = _correct_covariance_for_frozen_patterns(v, n_cond, frozen_inds)
343+
# v = _correct_covariance_for_frozen_patterns(v, n_cond, frozen_inds)
344344
# Omit any all-zero rows and columns, keeping as a sparse matrix.
345-
nonzero_rows = np.where(v.sum(axis=1) != 0)[0]
346-
v = v[nonzero_rows][:, nonzero_rows]
347-
vector1 = vector1[:, nonzero_rows]
348-
vector2 = vector2[:, nonzero_rows]
345+
# nonzero_rows = np.where(v.sum(axis=1) != 0)[0]
346+
# v = v[nonzero_rows][:, nonzero_rows]
347+
# vector1 = vector1[:, nonzero_rows]
348+
# vector2 = vector2[:, nonzero_rows]
349349

350350
# compute V^-1 vector1/2 for all vectors by solving Vx = vector1/2
351351
vector1_m = np.array([scipy.sparse.linalg.cg(v, vector1[i], atol=0)[0]

0 commit comments

Comments
 (0)