-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtraining_tomihari.py
242 lines (226 loc) · 7.92 KB
/
training_tomihari.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import numpy as np
from model_tomihari import FraxClassify
import time
import pandas as pd
from qiskit_ibm_runtime import Session
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import StandardScaler
from datetime import datetime
from matplotlib import pyplot as plt
def data_loader(
num_train,
num_test,
isFashion=False,
CSVpath=None,
feat=None,
label=None,
preprocessing=None,
):
try:
if isFashion:
print("Using Fashion MNIST")
test_label = np.load("data/fmnist_test_Label.npy")[0:num_test]
train_label = np.load("data/fmnist_train_Label.npy")[0:num_train]
test_feat = np.load("data/fmnist_test_feat.npy")[0:num_test]
train_feat = np.load("data/fmnist_train_feat.npy")[0:num_train]
elif CSVpath is not None:
print("Using CSV: ", CSVpath)
try:
data = pd.read_csv(CSVpath)
except Exception as e:
print("Error Cannot read CSV file: ", CSVpath)
raise e
if preprocessing == "Titanic":
print("Using Titanic preprocessing")
train_label, train_feat, test_label, test_feat = preprocessing_titanic(
data, num_train, num_test
)
else:
train, test = train_test_split(data, test_size=0.2, random_state=0)
print("No preprocessing")
train_label = train[label].to_numpy()[0:num_train]
train_feat = train.drop(label, axis=1).to_numpy()[0:num_train]
test_label = test[label].to_numpy()[0:num_test]
test_feat = test.drop(label, axis=1).to_numpy()[0:num_test]
else:
print("Using MNIST")
test_label = np.load("data/mnist_test_Label.npy")[0:num_test]
train_label = np.load("data/mnist_train_Label.npy")[0:num_train]
test_feat = np.load("data/mnist_test_feat.npy")[0:num_test]
train_feat = np.load("data/mnist_train_feat.npy")[0:num_train]
return test_label, train_label, test_feat, train_feat
except Exception as e:
print("Error in data_loader:", e)
raise e
def cut_data(train_label, train_feat, test_label, test_feat, rank, world_size):
data_len_min = len(train_feat) // world_size
offset = len(train_feat) % world_size
if rank < offset:
start1 = rank * (data_len_min + 1)
end1 = start1 + data_len_min + 1
else:
start1 = offset * (data_len_min + 1) + (rank - offset) * data_len_min
end1 = start1 + data_len_min
data_len_min = len(test_feat) // world_size
offset = len(test_feat) % world_size
if rank < offset:
start2 = rank * (data_len_min + 1)
end2 = start2 + data_len_min + 1
else:
start2 = offset * (data_len_min + 1) + (rank - offset) * data_len_min
end2 = start2 + data_len_min
return (
train_label[start1:end1],
train_feat[start1:end1],
test_label[start2:end2],
test_feat[start2:end2],
)
def preprocessing_titanic(data, num_train, num_test):
# Fill Null values
mean = data["Age"].mean()
std = data["Age"].std()
is_null = data["Age"].isnull().sum()
rand_age = np.random.randint(mean - std, mean + std, size=is_null)
age_slice = data["Age"].copy()
age_slice[np.isnan(age_slice)] = rand_age
data["Age"] = age_slice
data["Age"] = data["Age"].astype(int)
data["Embarked"] = data["Embarked"].fillna("S")
data = data.fillna(data["Fare"].mean())
# Label Encoding
le = LabelEncoder()
data["Pclass"] = le.fit_transform(data["Pclass"])
le = LabelEncoder()
data["Sex"] = le.fit_transform(data["Sex"])
le = LabelEncoder()
data["Embarked"] = le.fit_transform(data["Embarked"])
# print("info:", data.info())
# Drop the unnecessary columns
data = data.drop(["PassengerId", "Name", "Ticket", "Cabin"], axis=1)
# Relabeling
data["Survived"] = data["Survived"].replace(0, -1)
# Train Test Split
train, test = train_test_split(data, test_size=0.2)
train_label = train["Survived"].to_numpy()[0:num_train]
train_feat = train.drop(["Survived"], axis=1).to_numpy()[0:num_train]
test_label = test["Survived"].to_numpy()[0:num_test]
test_feat = test.drop(["Survived"], axis=1).to_numpy()[0:num_test]
# Standardization
sc = StandardScaler()
train_feat = sc.fit_transform(train_feat)
test_feat = sc.transform(test_feat)
# Normalization
train_feat = np.kron(train_feat, train_feat)
train_feat = np.kron(test_feat, test_feat)
train_feat /= np.linalg.norm(train_feat, ord=2, axis=1, keepdims=True)
test_feat /= np.linalg.norm(test_feat, ord=2, axis=1, keepdims=True)
return train_label, train_feat, test_label, test_feat
def parallel_train(
n_qubits,
layer_size,
world_size,
num_train,
num_test,
update_iter,
service,
backend,
params,
isFashion=False,
CSVpath=None,
preprocessing=None,
update="inorder",
train_rate=1.0,
update_rate=1.0,
isVal=True,
isEval=True,
label=None,
feat=None,
):
"""
Parallel training of the model
Args:
n_qubits: number of qubits
layer_size: number of layers
world_size: number of workers
num_train: number of training data
num_test: number of test data
update_iter: number of iterations
service: service name
backend: backend name
params: parameters for the model
isFashion: whether to use fashion mnist
CSVpath: path to the csv file
preprocessing: preprocessing function
update: update method
train_rate: training rate
update_rate: update rate
isVal: whether to use validation set
isEval: whether to use test set
label: label data
feat: feature data
"""
test_label, train_label, test_feat, train_feat = data_loader(
num_train,
num_test,
isFashion=isFashion,
CSVpath=CSVpath,
feat=feat,
label=label,
preprocessing=preprocessing,
)
model = FraxClassify(
n_qubits,
layer_size,
world_size,
num_train,
num_test,
backend,
params,
update=update,
train_rate=train_rate,
update_rate=update_rate,
)
print("Model initialized")
acc = []
with Session(service=service, backend=backend):
for i in range(update_iter):
st = time.time()
acc.extend(
model.fit_and_eval(
train_feat,
train_label,
test_feat,
test_label,
isVal=isVal,
isEval=isEval,
)
)
print("Implementation time: ", time.time() - st)
print("_______________NEW________________ Iteration: ", i)
if isVal:
filename = (
"experiment/acc_"
+ str(n_qubits)
+ "_"
+ str(layer_size)
+ "_"
+ str(update_iter)
+ "_"
+ datetime.now().strftime("%Y%m%d_%H%M%S")
+ ".png"
)
plt.title("Accuracy against iteration")
plt.xlabel("Iteration")
plt.ylabel("Accuracy")
plt.plot(range(len(acc)), acc)
plt.vlines(
range(0, update_iter * n_qubits * layer_size, n_qubits * layer_size),
min(acc) - 0.05,
max(acc) + 0.05,
"red",
linestyles="dashed",
label="Layer update",
)
plt.legend()
plt.savefig(filename)