-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathJSRe0151-P_ChatGPT_qPCR-Processor.Rmd
184 lines (126 loc) · 5.07 KB
/
JSRe0151-P_ChatGPT_qPCR-Processor.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
---
title: "ChatGPT-qPCR-Processor"
author: "Jacob Roth"
date: "2024-02-24"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
```{r}
# results <- "qPCR_20240201_1/20240208_1515_JSRe0151_151303_Results_20240208 165817.csv"
# overview <- "JSRe0151-P_DNA_qPCR-TidyqPCR_20240208_jsr.xlsx"
# exp <- "JSRe0151_20240201"
results <- "qPCR_20240223_1/20230223_JSRe0151_154845_20240223_181819_Results_20240223 200347.csv"
overview <- "JSRe0151-P_DNA_qPCR-TidyqPCR_jsr_20240212-2.xlsx"
exp <- "JSRe0151_20240208"
```
```{r}
# Load necessary libraries
library(dplyr)
# Read the data
data_qPCR <- read.csv("2-data_raw/qPCR_20240223_1/20230223_JSRe0151_154845_20240223_181819_Results_20240223 200347.csv",
skip = 21)
# data_qPCR <- read.csv(paste("2-data_raw/",results, sep = ""),
# skip = 21)
data_qPCR <- data_qPCR %>%
rename(target = Target) # Replace 'gene_target' with the actual column name
data_qPCR <- data_qPCR %>%
rename(sample = Sample) # Replace 'gene_target' with the actual column name
data_qPCR$sample_target <- paste(data_qPCR$sample, data_qPCR$target, sep="; ")
```
```{r remove primer dilutions}
data_qPCR <- data_qPCR %>%
filter(!grepl("_200", sample)) %>%
filter(!grepl("_2000", sample))
```
```{r Read metadata}
data_qPCR_primers <- read_excel(paste("1-notes/",overview, sep = ""),
sheet = "PrimerEfficiency")
data_qPCR_primers <- dplyr::select(data_qPCR_primers, c(target,Efficiency_target)) %>% unique() %>%
drop_na()
data_qPCR_overview <- read_excel(paste("1-notes/",overview, sep = ""),
sheet = "overview")
data_qPCR_overview <- data_qPCR_overview %>%
select(-c(sample,target))
#
# gene_house <- "Actin_JSRi032-033"
# sample_control1 <- "JSRp033_PolyA_20"
# sample_control2 <- "DMSO-4day_PolyA_20"
```
```{r Align identifiers}
#add metadata for relevent controls
data_qPCR <- data_qPCR %>%
left_join(data_qPCR_overview, by = "sample_target")
#add primer efficiency column for target
data_qPCR <- data_qPCR %>%
left_join(data_qPCR_primers, by = "target")
#add primer efficiency column for control
data_qPCR <- merge(data_qPCR, data_qPCR_primers, by.x = "gene_house1", by.y = "target", all.x = TRUE)
data_qPCR <- data_qPCR %>%
rename(Efficiency_target = Efficiency_target.x)
data_qPCR <- data_qPCR %>%
rename(Efficiency_control = Efficiency_target.y)
```
```{r Processing}
# Calculate the control Cq for each sample and target
data_qPCR_control_cq <- data_qPCR %>%
group_by(sample) %>%
summarise(Cq_control = mean(as.numeric(Cq[gene_house1 == target], na.rm = FALSE)), .groups = 'drop')
# Join this control Cq back to the original dataset
data_qPCR <- data_qPCR %>%
left_join(data_qPCR_control_cq, by = c("sample"))
```
```{r Calc deltaCq}
data_qPCR$Cq <- as.numeric(data_qPCR$Cq)
data_qPCR$Cq_control <- as.numeric(data_qPCR$Cq_control)
data_qPCR$Efficiency_target <- as.numeric(data_qPCR$Efficiency_target)
data_qPCR$Efficiency_control <- as.numeric(data_qPCR$Efficiency_control)
# data_qPCR$RelAbundance <- ((data_qPCR$Efficiency_target^(-data_qPCR$Cq))/(data_qPCR$Efficiency_control^(-data_qPCR$Cq_control)))
data_qPCR$RelAbundance <- ((data_qPCR$Efficiency_target^(-data_qPCR$Cq)) / (data_qPCR$Efficiency_control^(-data_qPCR$Cq_control)))
```
```{r}
data_qPCR$sample_target_control1 <- paste(data_qPCR$sample_control1,"; ",data_qPCR$target,sep = "")
# Step 1 & 2: Filter rows where sample_target_control1 equals sample_target and select Cq
matching_Cq_data <- data_qPCR %>%
filter(sample_target_control1 == sample_target) %>%
select(sample_target_control1, RelAbundance) # Assuming you want to keep the sample and target columns
matching_Cq_data <- matching_Cq_data %>%
rename(RelAbundance_control = RelAbundance)
data_qPCR <- data_qPCR %>%
left_join(matching_Cq_data, by = "sample_target_control1")
data_qPCR$FC <- data_qPCR$RelAbundance/data_qPCR$RelAbundance_control
```
```{r Prism Save}
data_qPCR_PRISM <- data_qPCR %>%
select(c(sample, target,FC)) %>%
na.omit()
data_qPCR_PRISM <- pivot_wider(data_qPCR_PRISM,
names_from = sample, values_from = FC,
values_fill = 0)
# write.csv(summary_RI,
# file='20221207_MergedRMATs-Encode-Public-Shechter_Summary-RI_FDR-filtered.csv',
# row.names = FALSE
# )
write.csv(data_qPCR_PRISM,
file=paste("4-data_processed/",exp,'_DataForPrism.csv', sep =""),
row.names = FALSE)
```
```{r, eval = FALSE}
library(dplyr)
# Calculate average Cq per Sample, assuming Cq is already numeric
# data_summary <- data %>%
# group_by(Sample) %>%
# summarise(Avg_Cq = mean(Cq, na.rm = TRUE))
library(ggplot2)
# Plotting
ggplot(data_filtered, aes(x = Sample, y = Relative_Difference, fill = Sample)) +
geom_bar(stat = "identity", position = "dodge") +
theme_minimal() +
labs(title = "Average Cq Values by Sample",
x = "Sample",
y = "Average Cq",
fill = "Sample") +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) # Rotate x-axis labels for readability
# facet_grid()
```