-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscarputils.py
156 lines (124 loc) · 4.62 KB
/
scarputils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
"""
Utilities for post-processing and spatial analysis of scarp template matching
results
"""
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.ndimage import zoom
from osgeo import gdal, osr
from copy import copy
def calculate_local_swath_orientation(data):
first = data[0]
idx = np.where(~np.isnan(first))
x0 = (idx.max() + idx.min()) / 2.
y0 = 0
v0 = np.array([x0, y0])
last = data[-1]
idx = np.where(~np.isnan(last))
x1 = (idx.max() + idx.min()) / 2.
y1 = -(data.shape[0] - 1)
v1 = np.array([x1, y1])
trend = v1 - v0 / np.norm(v1 - v0)
ex = np.array([1, 0])
theta = np.acos(trend.dot(ex))
return -(np.pi / 2 - theta)
def extract_swath_profile(data, nrow, ncol, length=1000, de=1, alpha=None):
if not alpha:
alpha = calculate_local_swath_orientation(data) + np.pi / 2
lx = (length * de / 2) * np.cos(alpha)
ly = (length * de / 2) * np.sin(alpha)
x = np.linspace(ncol - lx, ncol + lx)
y = np.linspace(nrow - ly, nrow + ly)
profile = data[y, x]
def load_masked_results(data_filename, snr_filename):
snr = gdal.Open(snr_filename)
snr = snr.GetRasterBand(1).ReadAsArray()
mask = snr > 100
del snr
data = gdal.Open(data_filename)
data = data.GetRasterBand(1).ReadAsArray()
data[data == 0] = np.nan
data[~mask] = np.nan
return data
def plot_polar_scatterplot(theta, data):
colors = data
ax = plt.subplot(111, projection='polar')
c = ax.scatter(theta, data, c=colors, cmap='viridis', alpha=0.75)
def plot_polar_histogram(theta, data, nbins=20):
#radii =
colors = radii
ax = plt.subplot(111, projection='polar')
c = ax.bars(theta, radii, c=colors, cmap='viridis', alpha=0.75)
def plot_violinplot(data):
ax = plt.subplot(111)
c = ax.violinplot(data, showmeans=true, showmedians=true)
def plot_distribution_ns(data, smoothing_length=None, de=1):
nrows = data.shape[0]
mean = np.zeros((nrows,))
sd = np.zeros((nrows,))
med = np.zeros((nrows,))
for i, row in enumerate(data):
mean[i] = np.nanmean(row)
sd[i] = np.nanstd(row)
med[i] = np.nanmedian(row)
for param in mean, sd, med:
param[np.isnan(param)] = 0
if smoothing_length:
n = float(smoothing_length / de)
kern = (1 / n) * np.ones((int(n),))
mean = np.convolve(mean, kern, mode='same')
sd = np.convolve(sd, kern, mode='same')
med = np.convolve(sd, kern, mode='same')
fig = plt.figure()
#ax = fig.add_subplot(211)
#imdata = zoom(data, 0.25, order=0)
#imdata[imdata == 9999] = np.nan
#im = ax.imshow(np.flipud(np.rot90(np.rot90(imdata)).T), cmap='viridis', aspect='auto')
#ax.tick_params(labelbottom='off', labelleft='off')
#cbar = plt.colorbar(im, shrink=0.5, orientation='horizontal')
#cbar.ax.set_xlabel('Amplitude [m]')
ax = fig.add_subplot(212)
x = de * np.arange(len(mean))
ax.fill_between(x, med - sd, med + sd, color=[0.5, 0.5, 0.5], alpha=0.5)
ax.plot(x, med, color=[1, 0, 0], alpha=0.75)
ax.set_xlabel('Along-swath distance [m]')
ax.set_ylabel('log$_{10}$($\kappa t$) [m$^2$]')
ymax = (med + sd).max()
#ax.set_ylim(0, ymax + 10)
ax.set_xlim(0, x.max())
def mask_results(results, ang_average, ang_tol=20*(np.pi/180), amp_thresh=0.1, age_thresh=10):
ang_mask = np.abs(results[2,:,:] - ang_average) > ang_tol
amp_mask = np.abs(results[0,:,:]) <= amp_thresh
age_mask = results[1,:,:] < age_thresh
results[:, ang_mask] = np.nan
results[:, amp_mask] = np.nan
results[:, age_mask] = np.nan
snr_thresh = np.median(results[3,:,:])
snr_mask = results[3,:,:] <= snr_thresh
def calculate_alpha_band(results, snr_min, snr_max=1000):
snr = copy(results[3])
if snr_max < np.nanmax(snr):
snr[snr > snr_max] = snr_max
alpha = (snr - snr_min) / (snr_max - snr_min)
return alpha
def write_tiff(filename, array, alpha, data_file):
nbands = 2
nrows, ncols = array.shape
inraster = gdal.Open(data_file)
transform = inraster.GetGeoTransform()
driver = gdal.GetDriverByName('GTiff')
outraster = driver.Create(filename, ncols, nrows, nbands, gdal.GDT_Float32)
outraster.SetGeoTransform(transform)
out_band = outraster.GetRasterBand(1)
out_band.WriteArray(array)
out_band.SetNoDataValue(np.nan)
out_band.FlushCache()
out_band = outraster.GetRasterBand(2)
out_band.WriteArray(alpha)
out_band.SetNoDataValue(np.nan)
out_band.FlushCache()
srs = osr.SpatialReference()
srs.ImportFromWkt(inraster.GetProjectionRef())
outraster.SetProjection(srs.ExportToWkt())