-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrade.py
95 lines (76 loc) · 2.91 KB
/
grade.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# GrAdE: gradient adaptive entropy
import torch
import torch.nn as nn
### Usage
### init with your nn.Module:
### grade = GradientAdaptiveEntropy(actor_net, entropy_coef=0.01, beta=0.9)
###
### Use in entropy bonus in loss
### policy_loss = policy_loss - grade.get_bonus(entropy)
from typing import Optional
class GradientAdaptiveEntropy:
def __init__(
self,
module: nn.Module,
entropy_coef: float = 0.01,
beta: float = 0.9,
eps: float = 1e-8
) -> None:
"""
Initialize Gradient Adaptive Entropy tracking.
Args:
module: The nn.Module to track gradients of
entropy_coef: Base entropy coefficient
beta: EMA decay rate (default: 0.9)
eps: Small constant for numerical stability
"""
self.module = module
self.entropy_coef = entropy_coef
self.beta = beta
self.eps = eps
# Initialize tracking variables
self.grad_mag_ema: Optional[float] = None
self.max_grad_mag_ema: Optional[float] = None
def compute_grad_magnitudes(self) -> float:
"""Compute the total gradient magnitude across all parameters."""
total_grad = 0.0
for param in self.module.parameters():
if param.grad is not None:
total_grad += torch.norm(param.grad.data).item()
return total_grad
def get_bonus(self, current_entropy: torch.Tensor) -> torch.Tensor:
"""
Calculate the adaptive entropy bonus.
Args:
current_entropy: Current policy entropy value
Returns:
Scaled entropy bonus based on gradient magnitudes
"""
# Compute current gradient magnitudes
current_grad_mag = self.compute_grad_magnitudes()
# Update EMA of gradient magnitudes
if self.grad_mag_ema is None:
self.grad_mag_ema = current_grad_mag
else:
self.grad_mag_ema = (self.beta * self.grad_mag_ema +
(1 - self.beta) * current_grad_mag)
# Update maximum observed EMA
if self.max_grad_mag_ema is None:
self.max_grad_mag_ema = self.grad_mag_ema
else:
self.max_grad_mag_ema = max(self.max_grad_mag_ema, self.grad_mag_ema)
# Compute ratio with numerical stability
ema_ratio = self.grad_mag_ema / (self.max_grad_mag_ema + self.eps)
# Return scaled entropy bonus
return self.entropy_coef * ema_ratio * current_entropy
def get_stats(self):
ema_ratio = self.grad_mag_ema / (self.max_grad_mag_ema + self.eps)
return {
'grade.grad_mag_ema': self.grad_mag_ema,
'grade.max_grad_mag_ema': self.max_grad_mag_ema,
'grade.ema_ratio': ema_ratio
}
def reset_stats(self) -> None:
"""Reset the EMA tracking statistics."""
self.grad_mag_ema = None
self.max_grad_mag_ema = None