forked from lllyasviel/ControlNet
-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathpredict.py
216 lines (208 loc) · 7.99 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/resolve/main/docs/python.md
from cog import BasePredictor, Input, Path
import os
from subprocess import call
from cldm.model import create_model, load_state_dict
from ldm.models.diffusion.ddim import DDIMSampler
from PIL import Image
import numpy as np
from typing import List
from utils import get_state_dict_path, download_model, model_dl_urls, annotator_dl_urls
MODEL_TYPE = "openpose"
if MODEL_TYPE == "canny":
from gradio_canny2image import process_canny
elif MODEL_TYPE == "depth":
from gradio_depth2image import process_depth
elif MODEL_TYPE == "hed":
from gradio_hed2image import process_hed
elif MODEL_TYPE == "normal":
from gradio_normal2image import process_normal
elif MODEL_TYPE == "mlsd":
from gradio_hough2image import process_mlsd
elif MODEL_TYPE == "scribble":
from gradio_scribble2image import process_scribble
elif MODEL_TYPE == "seg":
from gradio_seg2image import process_seg
elif MODEL_TYPE == "openpose":
from gradio_pose2image import process_pose
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
self.model = create_model('./models/cldm_v15.yaml').cuda()
self.model.load_state_dict(load_state_dict(get_state_dict_path(MODEL_TYPE), location='cuda'))
self.ddim_sampler = DDIMSampler(self.model)
def predict(
self,
image: Path = Input(description="Input image"),
prompt: str = Input(description="Prompt for the model"),
num_samples: str = Input(
description="Number of samples (higher values may OOM)",
choices=['1', '4'],
default='1'
),
image_resolution: str = Input(
description="Image resolution to be generated",
choices = ['256', '512', '768'],
default='512'
),
low_threshold: int = Input(description="Canny line detection low threshold", default=100, ge=1, le=255), # only applicable when model type is 'canny'
high_threshold: int = Input(description="Canny line detection high threshold", default=200, ge=1, le=255), # only applicable when model type is 'canny'
ddim_steps: int = Input(description="Steps", default=20),
scale: float = Input(description="Scale for classifier-free guidance", default=9.0, ge=0.1, le=30.0),
seed: int = Input(description="Seed", default=None),
eta: float = Input(description="Controls the amount of noise that is added to the input data during the denoising diffusion process. Higher value -> more noise", default=0.0),
a_prompt: str = Input(description="Additional text to be appended to prompt", default="best quality, extremely detailed"),
n_prompt: str = Input(description="Negative Prompt", default="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality"),
detect_resolution: int = Input(description="Resolution at which detection method will be applied)", default=512, ge=128, le=1024), # only applicable when model type is 'HED', 'seg', or 'MLSD'
# bg_threshold: float = Input(description="Background Threshold (only applicable when model type is 'normal')", default=0.0, ge=0.0, le=1.0), # only applicable when model type is 'normal'
# value_threshold: float = Input(description="Value Threshold (only applicable when model type is 'MLSD')", default=0.1, ge=0.01, le=2.0), # only applicable when model type is 'MLSD'
# distance_threshold: float = Input(description="Distance Threshold (only applicable when model type is 'MLSD')", default=0.1, ge=0.01, le=20.0), # only applicable when model type is 'MLSD'
) -> List[Path]:
"""Run a single prediction on the model"""
num_samples = int(num_samples)
image_resolution = int(image_resolution)
if not seed:
seed = np.random.randint(1000000)
else:
seed = int(seed)
# load input_image
input_image = Image.open(image)
# convert to numpy
input_image = np.array(input_image)
if MODEL_TYPE == "canny":
outputs = process_canny(
input_image,
prompt,
a_prompt,
n_prompt,
num_samples,
image_resolution,
ddim_steps,
scale,
seed,
eta,
low_threshold,
high_threshold,
self.model,
self.ddim_sampler,
)
elif MODEL_TYPE == "depth":
outputs = process_depth(
input_image,
prompt,
a_prompt,
n_prompt,
num_samples,
image_resolution,
detect_resolution,
ddim_steps,
scale,
seed,
eta,
self.model,
self.ddim_sampler,
)
elif MODEL_TYPE == "hed":
outputs = process_hed(
input_image,
prompt,
a_prompt,
n_prompt,
num_samples,
image_resolution,
detect_resolution,
ddim_steps,
scale,
seed,
eta,
self.model,
self.ddim_sampler,
)
elif MODEL_TYPE == "normal":
outputs = process_normal(
input_image,
prompt,
a_prompt,
n_prompt,
num_samples,
image_resolution,
ddim_steps,
scale,
seed,
eta,
bg_threshold,
self.model,
self.ddim_sampler,
)
elif MODEL_TYPE == "mlsd":
outputs = process_mlsd(
input_image,
prompt,
a_prompt,
n_prompt,
num_samples,
image_resolution,
detect_resolution,
ddim_steps,
scale,
seed,
eta,
value_threshold,
distance_threshold,
self.model,
self.ddim_sampler,
)
elif MODEL_TYPE == "scribble":
outputs = process_scribble(
input_image,
prompt,
a_prompt,
n_prompt,
num_samples,
image_resolution,
ddim_steps,
scale,
seed,
eta,
self.model,
self.ddim_sampler,
)
elif MODEL_TYPE == "seg":
outputs = process_seg(
input_image,
prompt,
a_prompt,
n_prompt,
num_samples,
image_resolution,
detect_resolution,
ddim_steps,
scale,
seed,
eta,
self.model,
self.ddim_sampler,
)
elif MODEL_TYPE == "openpose":
outputs = process_pose(
input_image,
prompt,
a_prompt,
n_prompt,
num_samples,
image_resolution,
detect_resolution,
ddim_steps,
scale,
seed,
eta,
self.model,
self.ddim_sampler,
)
# outputs from list to PIL
outputs = [Image.fromarray(output) for output in outputs]
# save outputs to file
outputs = [output.save(f"tmp/output_{i}.png") for i, output in enumerate(outputs)]
# return paths to output files
return [Path(f"tmp/output_{i}.png") for i in range(len(outputs))]