Skip to content

Latest commit

 

History

History
162 lines (111 loc) · 3.43 KB

README.md

File metadata and controls

162 lines (111 loc) · 3.43 KB

PedSim

MIT License Python Tests CodeQL

Description

Pedestrian Simulation in python.

Features

Continuous Simulation using numeric integration. The simulation can be configured using different models and different integration method.

Supported simulation models:

  • Logistic growth model
  • Predator prey model
  • SIR model
  • Actor-based simulation
  • Pedestrian simulation models
    • Social force model

Supported numeric integration methods:

  • Euler's method
  • Heun's method
  • Runge's & Kutta's method

What is still missing?

  • Other pedestrian simulation models

Requirements

  • python
  • pip

Usage

Install Requirements

pip install -r requirements.txt

Install this project

pip install -e .

Start tox

tox

Getting Started

Try the examples

Requirements

  • jupyter notebook

View the examples

Use the jupyter notebook using

jupyter notebook

Example notebooks are located in ./examples

Run a simulation

# import simulation packages
from simulate import Simulator, integrators
from simulate.models import SIRModel

# initialize the model
model = SIRModel(
  alpha=0.5,
  beta=0.1,
  population=1000,
  # choose a integration method
  integrator=integration_methods.runge_kutta,
)

# initialize the simulator
sim = Simulator(model, step_size=0.01, max_steps=100)

# run the simulation
sim.run()
result = sim.progress()

# extract the result vectors using the labels dictionary
labels = model.labels()
steps = result[:, labels["step"]]
susceptible = result[:, labels["susceptible"]]
infected = result[:, labels["infected"]]
removed = result[:, labels["removed"]]

Write your own simulation model

import numpy as np
from simulate.models import Model

# inherit from Model
class MyModel(Model):

    # override __init__
    def __init__(
            self,
            integrator: callable,
            my_param: float,
            my_start_value: float
    ):
        # labels dictionary maps from label to position in the result of simulate()
        super().__init__(
            integrator=integrator, labels={"step": 0, "my_value": 1}
        )
        self.__my_param = my_param
        self.__my_value = my_start_value

    # override simulate
    def simulate(self, step: float, step_size: float) -> np.ndarray:
        # use the integrator to determine the next value
        self.__my_value = self._integrator(
            self.__my_value,
            # use a custom function to calculate the difference to the next value
            lambda my_value: self.__my_param * my_value,
            step_size,
        )

        # labels must match this return value
        return np.array([step, self.__my_value])

License

PedSim is MIT licensed, as found in the LICENSE file.

Security Policy

The security policy can be found in the SECURITY.md file.

Contributing

We welcome your contribution to this project.

The contributing guidelines can be found in the CONTRIBUTING.md file.