-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path08-implementing-a-shortest-path-algorithm.py
47 lines (37 loc) · 1.56 KB
/
08-implementing-a-shortest-path-algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
"""
Algorithms are step-by-step procedures that developers use to perform
calculations and solve computational problems. In this project, you'll
learn how to use functions, loops, conditional statements, and dictionary
comprehensions to implement a Shortest Path algorithm.
"""
my_graph = {
'A': [('B', 5), ('C', 3), ('E', 11)],
'B': [('A', 5), ('C', 1), ('F', 2)],
'C': [('A', 3), ('B', 1), ('D', 1), ('E', 5)],
'D': [('C',1 ), ('E', 9), ('F', 3)],
'E': [('A', 11), ('C', 5), ('D', 9)],
'F': [('B', 2), ('D', 3)]
}
def shortest_path(graph, start, target = ''):
unvisited = list(graph)
distances = {node: 0 if node == start else float('inf') for node in graph}
paths = {node: [] for node in graph}
paths[start].append(start)
while unvisited:
current = min(unvisited, key=distances.get)
for node, distance in graph[current]:
if distance + distances[current] < distances[node]:
distances[node] = distance + distances[current]
if paths[node] and paths[node][-1] == node:
paths[node] = paths[current][:]
else:
paths[node].extend(paths[current])
paths[node].append(node)
unvisited.remove(current)
targets_to_print = [target] if target else graph
for node in targets_to_print:
if node == start:
continue
print(f'\n{start}-{node} distance: {distances[node]}\nPath: {" -> ".join(paths[node])}')
return distances, paths
shortest_path(my_graph, 'A', 'F')