-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrjd_procgeo.h
387 lines (307 loc) · 15.7 KB
/
rjd_procgeo.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
#define RJD_PROCGEO_H 1
// dependencies:
// * math.h
// Functions for generating procedural geometry:
// * Generates centered at 0,0 scaled by input params.
// * All functions write 3 floats per vertex, and skip stride number of floats. Pass 0 stride for tightly packed arrays.
// * Returns NULL if there isn't enough space in the float array to generate the geometry. Otherwise, returns the
// pointer to one past the last element.
// * Use *_calc_num_verts() functions to find how many vertices you need.
// * Vertices are generated in clockwise winding order, assuming view is looking -Z
enum rjd_procgeo_type
{
RJD_PROCGEO_TYPE_RECT,
RJD_PROCGEO_TYPE_CIRCLE,
RJD_PROCGEO_TYPE_BOX,
RJD_PROCGEO_TYPE_CONE,
RJD_PROCGEO_TYPE_CYLINDER,
RJD_PROCGEO_TYPE_SPHERE,
RJD_PROCGEO_TYPE_COUNT,
};
uint32_t rjd_procgeo_calc_num_verts(enum rjd_procgeo_type type, uint32_t tesselation);
float* rjd_procgeo(enum rjd_procgeo_type type, uint32_t tesselation, float size_x, float size_y, float size_z, float* out, uint32_t length, uint32_t stride);
uint32_t rjd_procgeo_rect_calc_num_verts(void);
uint32_t rjd_procgeo_circle_calc_num_verts(uint32_t tesselation);
uint32_t rjd_procgeo_box_calc_num_verts(void);
uint32_t rjd_procgeo_cone_calc_num_verts(uint32_t tesselation);
uint32_t rjd_procgeo_cylinder_calc_num_verts(uint32_t tesselation);
uint32_t rjd_procgeo_sphere_calc_num_verts(uint32_t tesselation);
float* rjd_procgeo_rect(float width, float height, float* out, uint32_t length, uint32_t stride);
float* rjd_procgeo_circle(float radius, uint32_t tesselation, float* out, uint32_t length, uint32_t stride);
float* rjd_procgeo_box(float width, float height, float depth, float* out, uint32_t length, uint32_t stride);
float* rjd_procgeo_cone(float radius, float height, uint32_t tesselation, float* out, uint32_t length, uint32_t stride);
float* rjd_procgeo_cylinder(float radius, float height, uint32_t tesselation, float* out, uint32_t length, uint32_t stride);
float* rjd_procgeo_sphere(float radius, uint32_t tesselation, float* out, uint32_t length, uint32_t stride);
////////////////////////////////////////////////////////////////////////////////
// inline implementation
#if RJD_IMPL
const float RJD_PROCGEO_PI = 3.141592653589793238462643f;
const uint32_t RJD_PROCGEO_MIN_TESSELATION_CIRCLE = 3;
const uint32_t RJD_PROCGEO_MIN_TESSELATION_SPHERE = 3;
const uint32_t RJD_PROCGEO_FLOATS_PER_TRI = 3;
uint32_t rjd_procgeo_calc_num_verts(enum rjd_procgeo_type type, uint32_t tesselation)
{
switch (type)
{
case RJD_PROCGEO_TYPE_RECT: return rjd_procgeo_rect_calc_num_verts();
case RJD_PROCGEO_TYPE_CIRCLE: return rjd_procgeo_circle_calc_num_verts(tesselation);
case RJD_PROCGEO_TYPE_BOX: return rjd_procgeo_box_calc_num_verts();
case RJD_PROCGEO_TYPE_CONE: return rjd_procgeo_cone_calc_num_verts(tesselation);
case RJD_PROCGEO_TYPE_CYLINDER: return rjd_procgeo_cylinder_calc_num_verts(tesselation);
case RJD_PROCGEO_TYPE_SPHERE: return rjd_procgeo_sphere_calc_num_verts(tesselation);
default: break;
}
RJD_ASSERTFAIL("Unknown type: %d", type);
return 0;
}
float* rjd_procgeo(enum rjd_procgeo_type type, uint32_t tesselation, float size_x, float size_y, float size_z, float* out, uint32_t length, uint32_t stride)
{
switch (type)
{
case RJD_PROCGEO_TYPE_RECT: return rjd_procgeo_rect(size_x, size_y, out, length, stride);
case RJD_PROCGEO_TYPE_CIRCLE: return rjd_procgeo_circle(size_x, tesselation, out, length, stride);
case RJD_PROCGEO_TYPE_BOX: return rjd_procgeo_box(size_x, size_y, size_z, out, length, stride);
case RJD_PROCGEO_TYPE_CONE: return rjd_procgeo_cone(size_x, size_y, tesselation, out, length, stride);
case RJD_PROCGEO_TYPE_CYLINDER: return rjd_procgeo_cylinder(size_x, size_y, tesselation, out, length, stride);
case RJD_PROCGEO_TYPE_SPHERE: return rjd_procgeo_sphere(size_x, tesselation, out, length, stride);
default: break;
}
RJD_ASSERTFAIL("Unknown type: %d", type);
return out;
}
uint32_t rjd_procgeo_rect_calc_num_verts() {
return RJD_PROCGEO_FLOATS_PER_TRI * 2;
}
uint32_t rjd_procgeo_circle_calc_num_verts(uint32_t tesselation) {
uint32_t final_tesselation = RJD_PROCGEO_MIN_TESSELATION_CIRCLE + tesselation;
return RJD_PROCGEO_FLOATS_PER_TRI * final_tesselation;
}
uint32_t rjd_procgeo_box_calc_num_verts() {
return RJD_PROCGEO_FLOATS_PER_TRI * 2 * 6;
}
uint32_t rjd_procgeo_cone_calc_num_verts(uint32_t tesselation) {
return 2 * rjd_procgeo_circle_calc_num_verts(tesselation);
}
uint32_t rjd_procgeo_cylinder_calc_num_verts(uint32_t tesselation)
{
uint32_t circle_verts = rjd_procgeo_circle_calc_num_verts(tesselation);
uint32_t final_tesselation = RJD_PROCGEO_MIN_TESSELATION_CIRCLE + tesselation;
uint32_t quad_verts = RJD_PROCGEO_FLOATS_PER_TRI * 2 * final_tesselation;
return quad_verts + (circle_verts * 2);
}
uint32_t rjd_procgeo_sphere_calc_num_verts(uint32_t tesselation) {
uint32_t final_tesselation = RJD_PROCGEO_MIN_TESSELATION_SPHERE + tesselation;
uint32_t tri_verts = RJD_PROCGEO_FLOATS_PER_TRI;
uint32_t quad_verts = tri_verts * 2;
return quad_verts * final_tesselation * final_tesselation - tri_verts * final_tesselation * 2;
}
float* rjd_procgeo_rect(float width, float height, float* out, uint32_t length, uint32_t stride)
{
const uint32_t floats_per_vert = RJD_PROCGEO_FLOATS_PER_TRI + (uint32_t)stride;
const uint32_t num_verts = rjd_procgeo_rect_calc_num_verts();
if (length < num_verts * floats_per_vert) {
return NULL;
}
const float x = width / 2.0f;
const float y = height / 2.0f;
int32_t i = 0;
out[i++] = -x; out[i++] = -y; out[i++] = 0.0f; i += stride;
out[i++] = x; out[i++] = y; out[i++] = 0.0f; i += stride;
out[i++] = -x; out[i++] = y; out[i++] = 0.0f; i += stride;
out[i++] = -x; out[i++] = -y; out[i++] = 0.0f; i += stride;
out[i++] = x; out[i++] = -y; out[i++] = 0.0f; i += stride;
out[i++] = x; out[i++] = y; out[i++] = 0.0f; i += stride;
return out + i;
}
float* rjd_procgeo_circle(float radius, uint32_t tesselation, float* out, uint32_t length, uint32_t stride)
{
const uint32_t floats_per_vert = RJD_PROCGEO_FLOATS_PER_TRI + stride;
const uint32_t num_verts = rjd_procgeo_circle_calc_num_verts(tesselation);
if (length < num_verts * floats_per_vert) {
return NULL;
}
const uint32_t final_tesselation = tesselation + RJD_PROCGEO_MIN_TESSELATION_CIRCLE;
const float arc_radians = RJD_PROCGEO_PI * 2 / final_tesselation;
for (uint32_t i = 0, arc_segment = 0; i < num_verts * floats_per_vert; ++arc_segment) {
float p1_radians = arc_radians * arc_segment;
float p2_radians = arc_radians * (arc_segment + 1);
out[i++] = 0; out[i++] = 0; out[i++] = 0; i += stride;
out[i++] = cosf(p1_radians) * radius; out[i++] = sinf(p1_radians) * radius; out[i++] = 0; i += stride;
out[i++] = cosf(p2_radians) * radius; out[i++] = sinf(p2_radians) * radius; out[i++] = 0; i += stride;
}
return out + num_verts * floats_per_vert;
}
float* rjd_procgeo_box(float width, float height, float depth, float* out, uint32_t length, uint32_t stride)
{
const uint32_t floats_per_vert = RJD_PROCGEO_FLOATS_PER_TRI + stride;
const uint32_t num_verts = rjd_procgeo_box_calc_num_verts();
if (length < num_verts * floats_per_vert) {
return NULL;
}
const float x = width / 2;
const float y = height / 2;
const float z = depth / 2;
int i = 0;
// front
out[i++] = -x; out[i++] = y; out[i++] = z; i += stride;
out[i++] = -x; out[i++] = -y; out[i++] = z; i += stride;
out[i++] = x; out[i++] = -y; out[i++] = z; i += stride;
out[i++] = -x; out[i++] = y; out[i++] = z; i += stride;
out[i++] = x; out[i++] = -y; out[i++] = z; i += stride;
out[i++] = x; out[i++] = y; out[i++] = z; i += stride;
// back
out[i++] = -x; out[i++] = y; out[i++] = -z; i += stride;
out[i++] = x; out[i++] = -y; out[i++] = -z; i += stride;
out[i++] = -x; out[i++] = -y; out[i++] = -z; i += stride;
out[i++] = -x; out[i++] = y; out[i++] = -z; i += stride;
out[i++] = x; out[i++] = y; out[i++] = -z; i += stride;
out[i++] = x; out[i++] = -y; out[i++] = -z; i += stride;
// left
out[i++] = -x; out[i++] = -y; out[i++] = -z; i += stride;
out[i++] = -x; out[i++] = -y; out[i++] = z; i += stride;
out[i++] = -x; out[i++] = y; out[i++] = z; i += stride;
out[i++] = -x; out[i++] = -y; out[i++] = -z; i += stride;
out[i++] = -x; out[i++] = y; out[i++] = z; i += stride;
out[i++] = -x; out[i++] = y; out[i++] = -z; i += stride;
// right
out[i++] = x; out[i++] = -y; out[i++] = -z; i += stride;
out[i++] = x; out[i++] = y; out[i++] = -z; i += stride;
out[i++] = x; out[i++] = y; out[i++] = z; i += stride;
out[i++] = x; out[i++] = -y; out[i++] = -z; i += stride;
out[i++] = x; out[i++] = y; out[i++] = z; i += stride;
out[i++] = x; out[i++] = -y; out[i++] = z; i += stride;
// top
out[i++] = x; out[i++] = y; out[i++] = -z; i += stride;
out[i++] = -x; out[i++] = y; out[i++] = -z; i += stride;
out[i++] = -x; out[i++] = y; out[i++] = z; i += stride;
out[i++] = x; out[i++] = y; out[i++] = -z; i += stride;
out[i++] = -x; out[i++] = y; out[i++] = z; i += stride;
out[i++] = x; out[i++] = y; out[i++] = z; i += stride;
// bottom
out[i++] = -x; out[i++] = -y; out[i++] = z; i += stride;
out[i++] = -x; out[i++] = -y; out[i++] = -z; i += stride;
out[i++] = x; out[i++] = -y; out[i++] = -z; i += stride;
out[i++] = -x; out[i++] = -y; out[i++] = z; i += stride;
out[i++] = x; out[i++] = -y; out[i++] = -z; i += stride;
out[i++] = x; out[i++] = -y; out[i++] = z; i += stride;
return out + i;
}
float* rjd_procgeo_cone(float height, float radius, uint32_t tesselation, float* out, uint32_t length, uint32_t stride)
{
const uint32_t floats_per_vert = RJD_PROCGEO_FLOATS_PER_TRI + stride;
const uint32_t num_verts = rjd_procgeo_cone_calc_num_verts(tesselation);
if (length < num_verts * floats_per_vert) {
return NULL;
}
const uint32_t final_tesselation = tesselation + RJD_PROCGEO_MIN_TESSELATION_CIRCLE;
const float arc_radians = RJD_PROCGEO_PI * 2 / final_tesselation;
const uint32_t top_begin_offset = (num_verts / 2) * floats_per_vert;
const float cone_y = height / 2;
for (uint32_t i = 0, arc_segment = 0; i < top_begin_offset; i += 3 * (floats_per_vert), ++arc_segment) {
float p1_radians = arc_radians * arc_segment;
float p2_radians = arc_radians * (arc_segment + 1);
float cos_1 = cosf(p1_radians) * radius;
float sin_1 = sinf(p1_radians) * radius;
float cos_2 = cosf(p2_radians) * radius;
float sin_2 = sinf(p2_radians) * radius;
uint32_t bot_index = i;
uint32_t top_index = i + top_begin_offset;
out[bot_index++] = 0; out[bot_index++] = -cone_y; out[bot_index++] = 0; bot_index += stride;
out[bot_index++] = cos_1; out[bot_index++] = -cone_y; out[bot_index++] = sin_1; bot_index += stride;
out[bot_index++] = cos_2; out[bot_index++] = -cone_y; out[bot_index++] = sin_2; bot_index += stride;
out[top_index++] = 0; out[top_index++] = cone_y; out[top_index++] = 0; top_index += stride;
out[top_index++] = cos_2; out[top_index++] = -cone_y; out[top_index++] = sin_2; top_index += stride;
out[top_index++] = cos_1; out[top_index++] = -cone_y; out[top_index++] = sin_1; top_index += stride;
}
return out + num_verts * floats_per_vert;
}
float* rjd_procgeo_cylinder(float radius, float height, uint32_t tesselation, float* out, uint32_t length, uint32_t stride)
{
const uint32_t floats_per_vert = RJD_PROCGEO_FLOATS_PER_TRI + stride;
const uint32_t num_verts = rjd_procgeo_cylinder_calc_num_verts(tesselation);
if (length < num_verts * floats_per_vert) {
return NULL;
}
const uint32_t final_tesselation = tesselation + RJD_PROCGEO_MIN_TESSELATION_CIRCLE;
const float arc_radians = RJD_PROCGEO_PI * 2 / final_tesselation;
const uint32_t top_begin_offset = rjd_procgeo_circle_calc_num_verts(tesselation);
const uint32_t side_begin_offset = top_begin_offset * 2;
const float y = height / 2;
for (uint32_t v = 0, arc_segment = 0; v < top_begin_offset; v += RJD_PROCGEO_FLOATS_PER_TRI, ++arc_segment) {
float p1_radians = arc_radians * arc_segment;
float p2_radians = arc_radians * (arc_segment + 1);
float cos_1 = cosf(p1_radians) * radius;
float sin_1 = sinf(p1_radians) * radius;
float cos_2 = cosf(p2_radians) * radius;
float sin_2 = sinf(p2_radians) * radius;
uint32_t bot_index = v * floats_per_vert;
out[bot_index++] = 0; out[bot_index++] = -y; out[bot_index++] = 0; bot_index += stride;
out[bot_index++] = cos_1; out[bot_index++] = -y; out[bot_index++] = sin_1; bot_index += stride;
out[bot_index++] = cos_2; out[bot_index++] = -y; out[bot_index++] = sin_2; bot_index += stride;
uint32_t top_index = (v + top_begin_offset) * floats_per_vert;
out[top_index++] = 0; out[top_index++] = y; out[top_index++] = 0; top_index += stride;
out[top_index++] = cos_2; out[top_index++] = y; out[top_index++] = sin_2; top_index += stride;
out[top_index++] = cos_1; out[top_index++] = y; out[top_index++] = sin_1; top_index += stride;
uint32_t side_index = (v + v + side_begin_offset) * floats_per_vert;
out[side_index++] = cos_1; out[side_index++] = -y; out[side_index++] = sin_1; side_index += stride;
out[side_index++] = cos_1; out[side_index++] = y; out[side_index++] = sin_1; side_index += stride;
out[side_index++] = cos_2; out[side_index++] = y; out[side_index++] = sin_2; side_index += stride;
out[side_index++] = cos_2; out[side_index++] = y; out[side_index++] = sin_2; side_index += stride;
out[side_index++] = cos_2; out[side_index++] = -y; out[side_index++] = sin_2; side_index += stride;
out[side_index++] = cos_1; out[side_index++] = -y; out[side_index++] = sin_1; side_index += stride;
}
return out + num_verts * floats_per_vert;
}
float* rjd_procgeo_sphere(float radius, uint32_t tesselation, float* out, uint32_t length, uint32_t stride)
{
const uint32_t floats_per_vert = RJD_PROCGEO_FLOATS_PER_TRI + stride;
const uint32_t num_verts = rjd_procgeo_sphere_calc_num_verts(tesselation);
if (length < num_verts * floats_per_vert) {
return NULL;
}
const float pi = RJD_PROCGEO_PI;
const uint32_t final_tesselation = tesselation + RJD_PROCGEO_MIN_TESSELATION_SPHERE;
uint32_t i = 0;
for (uint32_t y_arc = 0; y_arc < final_tesselation; ++y_arc) {
float y_arc1 = (float)y_arc / final_tesselation;
float y_arc2 = (float)(y_arc + 1) / final_tesselation;
float cos_2pi_y_arc1 = cosf(2 * pi * y_arc1);
float cos_2pi_y_arc2 = cosf(2 * pi * y_arc2);
float sin_2pi_y_arc1 = sinf(2 * pi * y_arc1);
float sin_2pi_y_arc2 = sinf(2 * pi * y_arc2);
for (uint32_t xz_arc = 0; xz_arc < final_tesselation; ++xz_arc) {
float xz_arc1 = (float)xz_arc / final_tesselation;
float xz_arc2 = (float)(xz_arc + 1) / final_tesselation;
float sin_pi_xz_arc1 = sinf(pi * xz_arc1);
float cos_pi_xz_arc1 = cosf(pi * xz_arc1);
float sin_pi_xz_arc2 = sinf(pi * xz_arc2);
float cos_pi_xz_arc2 = cosf(pi * xz_arc2);
float x1 = sin_pi_xz_arc1 * cos_2pi_y_arc1 * radius;
float y1 = cos_pi_xz_arc1 * radius;
float z1 = sin_pi_xz_arc1 * sin_2pi_y_arc1 * radius;
float x2 = sin_pi_xz_arc2 * cos_2pi_y_arc1 * radius;
float y2 = cos_pi_xz_arc2 * radius;
float z2 = sin_pi_xz_arc2 * sin_2pi_y_arc1 * radius;
float x3 = sin_pi_xz_arc1 * cos_2pi_y_arc2 * radius;
float y3 = cos_pi_xz_arc1 * radius;
float z3 = sin_pi_xz_arc1 * sin_2pi_y_arc2 * radius;
float x4 = sin_pi_xz_arc2 * cos_2pi_y_arc2 * radius;
float y4 = cos_pi_xz_arc2 * radius;
float z4 = sin_pi_xz_arc2 * sin_2pi_y_arc2 * radius;
if (xz_arc > 0)
{
out[i++] = x1; out[i++] = y1; out[i++] = z1; i += stride;
out[i++] = x3; out[i++] = y3; out[i++] = z3; i += stride;
out[i++] = x2; out[i++] = y2; out[i++] = z2; i += stride;
}
if (xz_arc < final_tesselation - 1)
{
out[i++] = x2; out[i++] = y2; out[i++] = z2; i += stride;
out[i++] = x3; out[i++] = y3; out[i++] = z3; i += stride;
out[i++] = x4; out[i++] = y4; out[i++] = z4; i += stride;
}
}
}
return out + num_verts * floats_per_vert;
}
#endif