-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcode.py
195 lines (158 loc) · 5.74 KB
/
code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import numpy as np
import os,math,cv2, h5py
import tensorflow as tf
from collections import defaultdict
from scipy import misc
from scipy import spatial
from tempfile import TemporaryFile
from matplotlib import pyplot as plt
from matplotlib.pyplot import imshow
import matplotlib.image as mpimg
from random import shuffle
from sklearn.cluster import MiniBatchKMeans
import glob
alex_net_path = os.path.join("tf_models/bvlc_alexnet.npy")
alex_net = np.load(alex_net_path, encoding='latin1').item()
vgg_net_path = os.path.join("tf_models/vgg16.npy")
vgg_net = np.load(vgg_net_path, encoding='latin1').item()
a_c1 = alex_net['conv1']
w1 = a_c1[0]
b1 = a_c1[1]
#Needed for creating feature descriptors
def max_pool(input_x, kernel_size, stride, padding='VALID'):
ksize = [1, kernel_size, kernel_size, 1]
strides = [1, stride, stride, 1]
return tf.nn.max_pool(input_x, ksize=ksize, strides=strides, padding=padding)
#Here we already have pre-trained weights
def conv_2d(input_x, weights, stride, bias=None, padding='VALID'):
stride_shape = [1, stride, stride, 1]
c = tf.nn.conv2d(input_x, weights, stride_shape, padding=padding)
if bias is not None:
c += bias
return c
def imgread(path):
# Read in the image using python opencv
img = cv2.imread(path)
img = img / 255.0
# Center crop the image
short_edge = min(img.shape[:2])
W, H, C = img.shape
to_crop = min(W, H)
cent_w = int((img.shape[1] - short_edge) / 2)
cent_h = int((img.shape[0] - short_edge) / 2)
img_cropped = img[cent_h:cent_h+to_crop, cent_w:cent_w+to_crop]
# Resize the cropped image to 224 by 224 for VGG16 network
img_resized = cv2.resize(img_cropped, (224, 224), interpolation=cv2.INTER_LINEAR)
return img_resized
ip = tf.Variable(tf.random_normal([1,3,3,5]))
ft = tf.Variable(tf.random_normal([1,1,5,1]))
def normalize(ip):
m2 = np.min(ip)
ip = ip - m2
m1 = np.max(ip)
ip = ip / m1
return ip
def alex_net_graph(ip, weights, biases):
w1, w2, w3, w4, w5 = weights
b1, b2, b3, b4, b5 = biases
with tf.variable_scope("alex_net"):
#CONV 1
c1 = conv_2d(ip, w1, 4, b1, padding='VALID')
r1 = tf.nn.relu(c1)
m1 = max_pool(r1, 3, 2, padding='VALID')
#print("M1", m1.get_shape)
#CONV2
m1 = tf.pad(m1, [[0, 0], [2, 2], [2, 2], [0, 0]], "CONSTANT") # add 2 padding
i1, i2 = tf.split(axis = 3, num_or_size_splits=2, value=m1)
w2_1, w2_2 = tf.split(axis = 3, num_or_size_splits=2, value=w2)
o1 = conv_2d(i1, w2_1, 1, bias=None, padding='SAME')
o2 = conv_2d(i2, w2_2, 1, bias=None, padding='SAME')
c2 = tf.concat(axis = 3, values = [o1,o2])
r2 = tf.nn.relu(c2)
m2 = max_pool(r2, 3, 2, padding='VALID')
#print("M2",m2.get_shape)
#CONV3
c3 = conv_2d(m2, w3, 1, b3)
r3 = tf.nn.relu(c3)
#print(r3.get_shape, "R3")
#CONV4
i1, i2 = tf.split(axis = 3, num_or_size_splits=2, value=r3)
w4_1, w4_2 = tf.split(axis = 3, num_or_size_splits=2, value=w4)
o1 = conv_2d(i1, w4_1, 1, bias=None, padding='SAME')
o2 = conv_2d(i2, w4_2, 1, bias=None, padding='SAME')
c4 = tf.concat(axis = 3, values = [o1,o2])
r4 = tf.nn.relu(c4)
#print(r4.get_shape, "R4")
#CONV5
i1, i2 = tf.split(axis = 3, num_or_size_splits=2, value=r4)
w5_1, w5_2 = tf.split(axis = 3, num_or_size_splits=2, value=w5)
o1 = conv_2d(i1, w5_1, 1, bias=None, padding='SAME')
o2 = conv_2d(i2, w5_2, 1, bias=None, padding='SAME')
c5 = tf.concat(axis = 3, values = [o1,o2])
r5 = tf.nn.relu(c5)
m5 = max_pool(r5, 3, 2, padding='VALID')
#print(m5.get_shape, "M5")
layers = [m1,m2,r3,r4,m5]
return layers
def features_alex_net(inputs, alex_net):
tf.reset_default_graph()
H,W,D = 227, 227, 3
w1, b1 = alex_net['conv1'][0], alex_net['conv1'][1]
w2, b2 = alex_net['conv2'][0], alex_net['conv2'][1]
w3, b3 = alex_net['conv3'][0], alex_net['conv3'][1]
w4, b4 = alex_net['conv4'][0], alex_net['conv4'][1]
w5, b5 = alex_net['conv5'][0], alex_net['conv5'][1]
weights = [w1,w2,w3,w4,w5]
biases = [b1,b2,b3,b4,b5]
#print(w1.shape, w2.shape, w3.shape, w4.shape, w5.shape)
images = tf.placeholder(tf.float32, [None, H, W, D])
input_layers = alex_net_graph(images, weights, biases)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
result = sess.run(input_layers, feed_dict={images: inputs})
return result
H,W,D = 227, 227, 3
training_list = []
training_list_names = []
for filename in sorted(glob.glob('training/*.jpg')):
img = cv2.imread(os.path.join(filename))
img = cv2.resize(img, (H, W), interpolation=cv2.INTER_LINEAR)
training_list.append(img)
training_list_names.append(filename)
def run(images,alex_net):
conv1, conv2, conv3, conv4, conv5 = features_alex_net(images, alex_net)
m1 = np.amax(conv1, axis=(1,2))
m2 = np.amax(conv2, axis=(1,2))
m3 = np.amax(conv3, axis=(1,2))
m4 = np.amax(conv4, axis=(1,2))
m5 = np.amax(conv5, axis=(1,2))
return np.concatenate((m1,m2,m3,m4,m5), axis=1)
r = None
if not os.path.exists('model.cnn.npy'):
r = run(training_list, alex_net)
np.save('model.cnn', r)
else:
r = np.load('model.cnn.npy')
from flask import Flask
app = Flask(__name__)
@app.route("/")
def hello():
results = {}
for filename in sorted(glob.glob('testing/*.jpg')):
img = cv2.imread(os.path.join(filename))
img = cv2.resize(img, (H, W), interpolation=cv2.INTER_LINEAR)
solution = run([img], alex_net)
closestIdx = spatial.cKDTree(r).query(solution[0], k=1)[1]
name = training_list_names[closestIdx].split('-')[0]
if name in results:
results[name] += 1
else:
results[name] = 1
result_max = 0
result_max_name = ""
for key in results.keys():
if results[key] > result_max:
result_max = results[key]
result_max_name = key
return result_max_name