|
| 1 | +from data_utils import KB, Text, TextKb |
| 2 | +import numpy as np |
| 3 | +from tqdm import tqdm |
| 4 | + |
| 5 | + |
| 6 | +class Batcher(object): |
| 7 | + def __init__(self, input_file, kb_file, text_kb_file, batch_size, vocab_dir, return_one_epoch=False, shuffle=True, |
| 8 | + min_num_mem_slots=100, |
| 9 | + max_num_mem_slots=500, |
| 10 | + min_num_text_mem_slots=0, |
| 11 | + max_num_text_mem_slots=1000, |
| 12 | + use_kb_mem=True, |
| 13 | + use_text_mem=False): |
| 14 | + self.batch_size = batch_size |
| 15 | + self.input_file = input_file |
| 16 | + self.kb_file = kb_file |
| 17 | + self.text_kb_file = text_kb_file |
| 18 | + self.shuffle = shuffle |
| 19 | + self.max_num_mem_slots = max_num_mem_slots |
| 20 | + self.min_num_mem_slots = min_num_mem_slots |
| 21 | + self.max_num_text_mem_slots = max_num_text_mem_slots |
| 22 | + self.min_num_text_mem_slots = min_num_text_mem_slots |
| 23 | + self.vocab_dir = vocab_dir |
| 24 | + self.return_one_epoch = return_one_epoch |
| 25 | + self.use_kb_mem = use_kb_mem |
| 26 | + self.use_text_mem = use_text_mem |
| 27 | + self.questions, self.q_lengths, self.answers, \ |
| 28 | + self.kb_memory_slots, self.kb_num_memories, \ |
| 29 | + self.text_key_mem, self.text_key_len, \ |
| 30 | + self.text_val_mem, self.num_text_mems = self.read_files() |
| 31 | + self.max_key_len = None |
| 32 | + |
| 33 | + if self.use_text_mem and self.use_kb_mem: |
| 34 | + assert self.text_key_mem is not None and self.kb_memory_slots is not None |
| 35 | + elif self.use_kb_mem: |
| 36 | + assert self.text_key_mem is None and self.kb_memory_slots is not None |
| 37 | + else: |
| 38 | + assert self.text_key_mem is not None and self.kb_memory_slots is None |
| 39 | + |
| 40 | + self.num_questions = len(self.questions) |
| 41 | + print('Num questions {}'.format(self.num_questions)) |
| 42 | + self.start_index = 0 |
| 43 | + if self.shuffle: |
| 44 | + self.shuffle_data() |
| 45 | + |
| 46 | + def get_next_batch(self): |
| 47 | + """ |
| 48 | + returns the next batch |
| 49 | + TODO(rajarshd): move the if-check outside the loop, so that conditioned is not checked every damn time. the conditions are suppose to be immutable. |
| 50 | + """ |
| 51 | + while True: |
| 52 | + if self.start_index >= self.num_questions: |
| 53 | + if self.return_one_epoch: |
| 54 | + return # stop after returning one epoch |
| 55 | + self.start_index = 0 |
| 56 | + if self.shuffle: |
| 57 | + self.shuffle_data() |
| 58 | + else: |
| 59 | + num_data_returned = min(self.batch_size, self.num_questions - self.start_index) |
| 60 | + assert num_data_returned > 0 |
| 61 | + end_index = self.start_index + num_data_returned |
| 62 | + if self.use_kb_mem and self.use_text_mem: |
| 63 | + yield self.questions[self.start_index:end_index], self.q_lengths[self.start_index:end_index], \ |
| 64 | + self.answers[self.start_index:end_index], self.kb_memory_slots[self.start_index:end_index], \ |
| 65 | + self.kb_num_memories[self.start_index:end_index], self.text_key_mem[self.start_index:end_index], \ |
| 66 | + self.text_key_len[self.start_index:end_index], self.text_val_mem[self.start_index:end_index], \ |
| 67 | + self.num_text_mems[self.start_index:end_index] |
| 68 | + elif self.use_kb_mem: |
| 69 | + yield self.questions[self.start_index:end_index], self.q_lengths[self.start_index:end_index], \ |
| 70 | + self.answers[self.start_index:end_index], self.kb_memory_slots[self.start_index:end_index], \ |
| 71 | + self.kb_num_memories[self.start_index:end_index] |
| 72 | + else: |
| 73 | + yield self.questions[self.start_index:end_index], self.q_lengths[self.start_index:end_index], \ |
| 74 | + self.answers[self.start_index:end_index], self.text_key_mem[self.start_index:end_index], \ |
| 75 | + self.text_key_len[self.start_index:end_index], self.text_val_mem[self.start_index:end_index], \ |
| 76 | + self.num_text_mems[self.start_index:end_index] |
| 77 | + self.start_index = end_index |
| 78 | + |
| 79 | + def shuffle_data(self): |
| 80 | + """ |
| 81 | + Shuffles maintaining the same order. |
| 82 | + """ |
| 83 | + perm = np.random.permutation(self.num_questions) # perm of index in range(0, num_questions) |
| 84 | + assert len(perm) == self.num_questions |
| 85 | + if self.use_kb_mem and self.use_text_mem: |
| 86 | + self.questions, self.q_lengths, self.answers, self.kb_memory_slots, self.kb_num_memories, self.text_key_mem,\ |
| 87 | + self.text_key_len, self.text_val_mem, self.num_text_mems = \ |
| 88 | + self.questions[perm], self.q_lengths[perm], self.answers[perm], self.kb_memory_slots[perm], \ |
| 89 | + self.kb_num_memories[perm], self.text_key_mem[perm], self.text_key_len[perm], self.text_val_mem[perm], self.num_text_mems[perm] |
| 90 | + elif self.use_kb_mem: |
| 91 | + self.questions, self.q_lengths, self.answers, self.kb_memory_slots, self.kb_num_memories = \ |
| 92 | + self.questions[perm], self.q_lengths[perm], self.answers[perm], self.kb_memory_slots[perm], \ |
| 93 | + self.kb_num_memories[perm] |
| 94 | + else: |
| 95 | + self.questions, self.q_lengths, self.answers, self.text_key_mem, self.text_key_len, self.text_val_mem,\ |
| 96 | + self.num_text_mems = self.questions[perm], self.q_lengths[perm], self.answers[perm], self.text_key_mem[perm],\ |
| 97 | + self.text_key_len[perm], self.text_val_mem[perm], self.num_text_mems[perm] |
| 98 | + def reset(self): |
| 99 | + self.start_index = 0 |
| 100 | + |
| 101 | + def read_files(self): |
| 102 | + """reads the kb and text files and creates the numpy arrays after padding""" |
| 103 | + # read the KB file |
| 104 | + kb = KB(self.kb_file, vocab_dir=self.vocab_dir) if self.use_kb_mem else None |
| 105 | + # read text kb file |
| 106 | + text_kb = TextKb(self.text_kb_file, vocab_dir=self.vocab_dir) if self.use_text_mem else None |
| 107 | + self.max_key_len = text_kb.max_key_length if self.use_text_mem else None |
| 108 | + # Question file |
| 109 | + questions = Text(self.input_file, |
| 110 | + max_num_facts=self.max_num_mem_slots, |
| 111 | + min_num_facts=self.min_num_mem_slots, |
| 112 | + min_num_text_facts=self.min_num_text_mem_slots, |
| 113 | + max_num_text_facts=self.max_num_text_mem_slots) |
| 114 | + max_q_length, max_num_kb_facts, max_num_text_kb_facts, question_list = questions.max_q_length, \ |
| 115 | + questions.max_num_kb_facts, \ |
| 116 | + questions.max_num_text_kb_facts, \ |
| 117 | + questions.question_list |
| 118 | + entity_vocab = kb.entity_vocab if self.use_kb_mem else text_kb.entity_vocab |
| 119 | + relation_vocab = kb.relation_vocab if self.use_kb_mem else text_kb.relation_vocab |
| 120 | + num_questions = len(question_list) |
| 121 | + question_lengths = np.ones([num_questions]) * -1 |
| 122 | + questions = np.ones([num_questions, max_q_length]) * entity_vocab['PAD'] |
| 123 | + answers = np.ones_like(question_lengths) * entity_vocab['UNK'] |
| 124 | + all_kb_memories = None |
| 125 | + num_kb_memories = None |
| 126 | + text_key_memories = None |
| 127 | + text_key_lengths = None |
| 128 | + text_val_memories = None |
| 129 | + num_text_memories = None |
| 130 | + |
| 131 | + if self.use_kb_mem: |
| 132 | + print('Make data tensors for kb') |
| 133 | + all_kb_memories = np.ones([num_questions, max_num_kb_facts, 3]) |
| 134 | + all_kb_memories[:, :, 0].fill(entity_vocab['DUMMY_MEM']) |
| 135 | + all_kb_memories[:, :, 2].fill(entity_vocab['DUMMY_MEM']) |
| 136 | + all_kb_memories[:, :, 1].fill(relation_vocab['DUMMY_MEM']) |
| 137 | + num_kb_memories = np.ones_like(question_lengths) * -1 |
| 138 | + for q_counter, q in enumerate(tqdm(question_list)): |
| 139 | + question_str = q.parsed_question['question'] |
| 140 | + question_entities = q.parsed_question['entities'] |
| 141 | + question_indices = q.parsed_question['indices'] |
| 142 | + q_answers = q.parsed_question['answers'] |
| 143 | + # num_kb_memories.append(q.parsed_question['num_facts']) |
| 144 | + num_kb_memories[q_counter] = q.parsed_question['num_facts'] |
| 145 | + q_start_indices = np.asarray(q.parsed_question['start_indices']) |
| 146 | + q_fact_lengths = np.asarray( |
| 147 | + q.parsed_question['fact_lengths']) # for each entity in question retrieve the fact |
| 148 | + sorted_index = np.argsort(q_fact_lengths) |
| 149 | + q_fact_lengths = q_fact_lengths[sorted_index] |
| 150 | + q_start_indices = q_start_indices[sorted_index] |
| 151 | + question_words_list = question_str.split(' ') |
| 152 | + for counter, index in enumerate(question_indices): # replace the entities with their ids |
| 153 | + question_words_list[index] = question_entities[counter] |
| 154 | + question_int = [entity_vocab[w_q] if w_q.strip() in entity_vocab else entity_vocab['UNK'] for w_q in |
| 155 | + question_words_list] |
| 156 | + question_len = len(question_int) |
| 157 | + questions[q_counter, 0:question_len] = question_int |
| 158 | + question_lengths[q_counter] = question_len |
| 159 | + answer_int = [entity_vocab[a] if a in entity_vocab else entity_vocab['UNK'] for a in q_answers] |
| 160 | + answers[q_counter] = answer_int[0] |
| 161 | + |
| 162 | + # memories |
| 163 | + kb_facts = kb.facts |
| 164 | + mem_counter = 0 |
| 165 | + for counter, start_index in enumerate(q_start_indices): |
| 166 | + num_facts = q_fact_lengths[counter] |
| 167 | + if mem_counter < self.max_num_mem_slots: |
| 168 | + for mem_index in xrange(start_index, start_index + num_facts): |
| 169 | + mem = kb_facts[mem_index] |
| 170 | + e1_int = entity_vocab[mem['e1']] if mem['e1'] in entity_vocab else entity_vocab['UNK'] |
| 171 | + e2_int = entity_vocab[mem['e2']] if mem['e2'] in entity_vocab else entity_vocab['UNK'] |
| 172 | + r_int = relation_vocab[mem['r']] if mem['r'] in relation_vocab else relation_vocab['UNK'] |
| 173 | + all_kb_memories[q_counter][mem_counter][0] = e1_int |
| 174 | + all_kb_memories[q_counter][mem_counter][1] = r_int |
| 175 | + all_kb_memories[q_counter][mem_counter][2] = e2_int |
| 176 | + mem_counter += 1 |
| 177 | + if mem_counter == self.max_num_mem_slots: # will use the first max_num_mem_slots slots |
| 178 | + break |
| 179 | + if self.use_text_mem: |
| 180 | + |
| 181 | + print('Make data tensors for text kb') |
| 182 | + max_key_len = text_kb.max_key_length |
| 183 | + text_key_memories = np.ones([num_questions, max_num_text_kb_facts, max_key_len]) * entity_vocab['DUMMY_MEM'] |
| 184 | + text_key_lengths = np.zeros([num_questions, max_num_text_kb_facts]) |
| 185 | + text_val_memories = np.ones([num_questions, max_num_text_kb_facts]) * entity_vocab['DUMMY_MEM'] |
| 186 | + num_text_memories = np.ones_like(question_lengths) * -1 |
| 187 | + for q_counter, q in enumerate(tqdm(question_list)): |
| 188 | + # TODO (rajarshd): Move the repeated piece of code in a method. |
| 189 | + question_str = q.parsed_question['question'] |
| 190 | + question_entities = q.parsed_question['entities'] |
| 191 | + question_indices = q.parsed_question['indices'] |
| 192 | + q_answers = q.parsed_question['answers'] |
| 193 | + question_words_list = question_str.split(' ') |
| 194 | + for counter, index in enumerate(question_indices): # replace the entities with their ids |
| 195 | + question_words_list[index] = question_entities[counter] |
| 196 | + question_int = [entity_vocab[w_q] if w_q.strip() in entity_vocab else entity_vocab['UNK'] for w_q in |
| 197 | + question_words_list] |
| 198 | + question_len = len(question_int) |
| 199 | + questions[q_counter, 0:question_len] = question_int |
| 200 | + question_lengths[q_counter] = question_len |
| 201 | + answer_int = [entity_vocab[a] if a in entity_vocab else entity_vocab['UNK'] for a in q_answers] |
| 202 | + answers[q_counter] = answer_int[0] |
| 203 | + |
| 204 | + # memories |
| 205 | + num_q_text_memories = q.parsed_question['text_kb_num_facts'] |
| 206 | + # in the training set, account for the discarded memories |
| 207 | + if 'black_lists' in q.parsed_question: |
| 208 | + num_discarded = 0 |
| 209 | + for black_list in q.parsed_question['black_lists']: |
| 210 | + num_discarded += len(black_list) |
| 211 | + num_q_text_memories -= num_discarded |
| 212 | + num_text_memories[q_counter] = num_q_text_memories |
| 213 | + q_start_indices = np.asarray(q.parsed_question['text_kb_start_indices']) |
| 214 | + q_fact_lengths = np.asarray( |
| 215 | + q.parsed_question['text_kb_lengths']) # for each entity in question retrieve the fact |
| 216 | + q_black_lists = np.asarray( |
| 217 | + q.parsed_question['black_lists']) if 'black_lists' in q.parsed_question else None |
| 218 | + sorted_index = np.argsort(q_fact_lengths) |
| 219 | + q_fact_lengths = q_fact_lengths[sorted_index] |
| 220 | + q_start_indices = q_start_indices[sorted_index] |
| 221 | + q_black_lists = q_black_lists[sorted_index] if q_black_lists is not None else None |
| 222 | + text_kb_facts = text_kb.facts_list |
| 223 | + mem_counter = 0 |
| 224 | + for counter, start_index in enumerate(q_start_indices): |
| 225 | + num_facts = q_fact_lengths[counter] |
| 226 | + black_list_entity = set(q_black_lists[counter]) if q_black_lists is not None else None |
| 227 | + if mem_counter < self.max_num_text_mem_slots: |
| 228 | + for mem_entity_counter, mem_index in enumerate(xrange(start_index, start_index + num_facts)): |
| 229 | + if black_list_entity is not None and mem_entity_counter in black_list_entity: |
| 230 | + continue |
| 231 | + mem = text_kb_facts[mem_index] |
| 232 | + key = mem['key'] |
| 233 | + key_int = [entity_vocab[k] if k in entity_vocab else entity_vocab['UNK'] for k in key] |
| 234 | + val = mem['value'] |
| 235 | + val_int = entity_vocab[val] if val in entity_vocab else entity_vocab['UNK'] |
| 236 | + key_len = int(mem['key_length']) |
| 237 | + text_key_memories[q_counter][mem_counter][0:key_len] = key_int |
| 238 | + text_val_memories[q_counter][mem_counter] = val_int |
| 239 | + text_key_lengths[q_counter][mem_counter] = key_len |
| 240 | + mem_counter += 1 |
| 241 | + if mem_counter == self.max_num_text_mem_slots: # will use the first max_num_mem_slots slots |
| 242 | + break |
| 243 | + |
| 244 | + return questions, question_lengths, answers, all_kb_memories, num_kb_memories, \ |
| 245 | + text_key_memories, text_key_lengths, text_val_memories, num_text_memories |
0 commit comments