-
Notifications
You must be signed in to change notification settings - Fork 0
/
btree.cpp
518 lines (465 loc) · 12.6 KB
/
btree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
#ifndef ALGO_BTREE_H__
#define ALGO_BTREE_H__
#include <stdio.h>
#include <assert.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <memory>
#define BLOCKSIZE 4096
#define T 255
#define LEAF 0x0001
#define ONDISK 0x0002
#define MARKFREE 0x0004
namespace alg {
class BTree {
private:
// 4K node, 4096 bytes to write
// t = 255
struct node_t {
uint16_t n; // num key
uint16_t flag; // flags
uint32_t offset; // lseek offset related to file beginning
char padding[12]; // padding to 4096
int32_t key[509]; // key
int32_t c[510]; // childs pointers (represented as file offsets)
} __attribute__ ((packed));
typedef struct node_t *node;
public:
// node and index
struct Res {
uint32_t offset;
int32_t idx;
};
private:
int fd;
private:
BTree(const BTree &);
BTree& operator=(const BTree&);
public:
BTree(const char * path) {
fd = open(path, O_RDWR|O_CREAT, 0640);
if (fd == -1)
return;
node x = (node)ALLOCBLK();
int n = read(fd,x,BLOCKSIZE);
if (n != BLOCKSIZE) { // init new btree
x->flag |= LEAF;
WRITE(x);
}
}
~BTree() {
close(fd);
}
Res Search(int32_t x) {
node root = ROOT();
return search(root, x);
}
void Insert(int32_t k) {
node r = ROOT();
if (r->n == 2*T - 1) {
// place the old root node to the end of the file
r->flag &= ~ONDISK;
WRITE(r);
// new root
node s = (node)ALLOCBLK();
s->flag &= ~LEAF;
s->flag |= ONDISK; // write to offset 0
s->offset = 0;
s->n = 0;
s->c[0] = r->offset;
split_child(s, 0); // split_child with write s
insert_nonfull(s, k);
} else {
insert_nonfull(r, k);
}
}
void DeleteKey(int32_t k) {
node root = ROOT();
delete_op(root, k);
}
private:
/**
* search a key, returns node and index
*/
Res search(node x, int32_t k) {
int32_t i = 0;
Res ret;
while (i<x->n && k > x->key[i]) i++;
if (i<x->n && k == x->key[i]) { // search in [0,n-1]
ret.offset = x->offset;
ret.idx = i;
return ret;
} else if (x->flag & LEAF) { // leaf, no more childs
ret.offset = 0;
ret.idx = -1;
return ret;
} else {
std::auto_ptr<node_t> xi(READ(x, i)); // search in a child
return search(xi.get(), k);
}
}
/**
* insert into non-full node
*/
void insert_nonfull(node x, int32_t k) {
int32_t i = x->n-1;
if (x->flag & LEAF) { // insert into this leaf
while (i>=0 && k < x->key[i]) { // right shift to
x->key[i+1] = x->key[i]; // make place for k
i = i - 1;
}
x->key[i+1] = k;
x->n = x->n + 1;
WRITE(x);
} else {
while(i>=0 && k < x->key[i]) {
i = i-1;
}
i=i+1;
node xi = READ(x, i); // insert the key into one child.
if (xi->n == 2*T-1) {
split_child(x, i);
if (k > x->key[i]) {
i = i+1;
}
// NOTICE!
// reload x[i] after split_child.
xi = READ(x, i);
}
insert_nonfull(xi, k);
delete xi;
}
}
/**
* split a node into 2.
*/
void split_child(node x, int32_t i) {
std::auto_ptr<node_t> z((node)ALLOCBLK());
std::auto_ptr<node_t> y(READ(x, i));
z->flag &= ~LEAF;
z->flag |= (y->flag & LEAF);
z->n = T - 1;
int32_t j;
for (j=0;j<T-1;j++) { // init z, t-1 keys
z->key[j] = y->key[j+T];
}
if (!(y->flag & LEAF)) { // if not leaf, copy childs too.
for (j=0;j<T;j++) {
z->c[j] = y->c[j+T];
}
}
y->n = T-1; // shrink y to t-1 elements
WRITE(y.get());
WRITE(z.get());
for (j=x->n;j>=i+1;j--) { // make place for the new child in x
x->c[j+1] = x->c[j];
}
x->c[i+1] = z->offset; // make z the child of x
for (j=x->n-1;j>=i;j--) { // move keys in x
x->key[j+1] = x->key[j];
}
x->key[i] = y->key[T-1]; // copy the middle element of y into x
x->n = x->n+1;
WRITE(x);
}
/**
* recursive deletion.
*/
void delete_op(node x, int32_t k) {
int32_t i;
/*
int t;
printf("key:%d n:%d\n",k, x->n);
for (t=0;t<x->n;t++) {
printf("=%d=", x->key[t]);
}
printf("\n");
*/
if (x->n == 0) { // emtpy node
return;
}
i = x->n - 1;
while (i>=0 && k < x->key[i]) { // search the key.
i = i - 1;
}
if (i >= 0 && x->key[i] == k) { // key exists in this node.
if (x->flag & LEAF) {
//printf("in case 1 [%d] [%d]\n", i,x->n);
case1(x, i, k);
} else {
//printf("in case 2 [%d] [%d]\n", i,x->n);
case2(x, i, k);
}
} else {
// case 3. on x.c[i+1]
case3(x, i+1, k);
}
}
/**
* case 1.
* If the key k is in node x and x is a leaf, delete the key k from x.
*/
void case1(node x, int32_t i, int32_t k) {
int j;
for (j = i;j<x->n-1;j++) { // shifting the keys only, no childs available.
x->key[j] = x->key[j+1];
}
x->n = x->n - 1;
WRITE(x);
}
void case2(node x, int32_t i, int32_t k) {
// case 2a:
// If the child y that precedes k in node x has at least t
// keys, then find the predecessor k0 of k in the subtree
// rooted at y. Recursively delete k0, and replace k by k0 in x.
// (We can find k0 and delete it in a single downward pass.)
std::auto_ptr<node_t> y(READ(x, i));
if (y->n >= T) {
int32_t k0 = y->key[y->n-1];
//printf("case2a %d %d\n", k0, x->key[i]);
x->key[i] = k0;
WRITE(x);
delete_op(y.get(), k0);
return;
}
// case 2b.
// If y has fewer than t keys, then, symmetrically, examine
// the child z that follows k in node x. If z has at least t keys,
// then find the successor k0 of k in the subtree rooted at z.
// Recursively delete k0, and replace k by k0 in x. (We can find k0
// and delete it in a single downward pass.)
std::auto_ptr<node_t> z(READ(x, i+1));
if (z->n >= T) {
int32_t k0 = z->key[0];
//printf("case2b %d %d\n", k0, x->key[i]);
x->key[i] = k0;
WRITE(x);
delete_op(z.get(), k0);
return;
}
// case 2c:
// Otherwise, if both y and z have only t-1 keys,
// merge k and all of z into y, so that x loses both k and the
// pointer to z, and y now contains 2t - 1 keys.
// Then free z and recursively delete k from y.
if (y->n == T-1 && z->n == T-1) {
//printf("case2c");
// merge k & z into y
y->key[y->n] = k;
int j;
for (j=0;j<z->n;j++) { // merge keys of z
y->key[y->n+1+j] = z->key[j];
}
for (j=0;j<z->n+1;j++) { // merge childs of z
y->c[y->n+1+j] = z->c[j];
}
// mark free z
z->flag |= MARKFREE;
y->n = y->n + z->n + 1; // size after merge
WRITE(z.get());
WRITE(y.get());
for (j=i;j<x->n-1;j++) { // delete k from node x
x->key[j] = x->key[j+1];
}
for (j=i+1;j<x->n;j++){ // delete pointer to z --> (i+1)th
x->c[j] = x->c[j+1];
}
x->n = x->n - 1;
WRITE(x);
// recursive delete k
delete_op(y.get(), k);
return;
}
// cannot reach here
assert(false);
}
void case3(node x, int32_t i, int32_t k) {
std::auto_ptr<node_t> ci(READ(x, i));
if (ci->n > T-1) { // ready to delete in child.
delete_op(ci.get(), k);
return;
}
// case 3a.
// If x.c[i] has only t - 1 keys but has an immediate sibling with at least t keys,
// give x.c[i] an extra key by moving a key from x down into x.c[i], moving a
// key from x.c[i]’s immediate left or right sibling up into x, and moving the
// appropriate child pointer from the sibling into x.c[i].
std::auto_ptr<node_t> left(READ(x, i-1));
if (i-1>=0 && left->n >= T) {
// printf("case3a, left");
// right shift keys and childs of x.c[i] to make place for a key
// right shift ci childs
int j;
for (j=ci->n-1;j>0;j--) {
ci->key[j] = ci->key[j-1];
}
for (j=ci->n;j>0;j--) {
ci->c[j] = ci->c[j-1];
}
ci->n = ci->n+1;
ci->key[0] = x->key[i-1]; // copy key from x[i-1] to ci[0]
ci->c[0] = left->c[left->n]; // copy child from left last child.
x->key[i] = left->key[left->n-1]; // copy left last key into x[i]
left->n = left->n-1; // decrease left size
WRITE(ci.get());
WRITE(x);
WRITE(left.get());
delete_op(ci.get(), k);
return;
}
// case 3a. right sibling
std::auto_ptr<node_t> right(READ(x, i+1));
if (i+1<=x->n && right->n >= T) {
// printf("case3a, right");
ci->key[ci->n] = x->key[i]; // append key from x
ci->c[ci->n+1] = right->c[0]; // append child from right
ci->n = ci->n+1;
x->key[i] = right->key[0]; // subsitute key in x
int j;
for (j=0;j<right->n-1;j++) { // remove key[0] from right sibling
right->key[j] = right->key[j+1];
}
for (j=0;j<right->n;j++) { // and also the child c[0] of the right sibling.
right->c[j] = right->c[j+1];
}
right->n = right->n - 1; // reduce the size of the right sibling.
WRITE(ci.get());
WRITE(x);
WRITE(right.get());
delete_op(ci.get(), k); // recursive delete key in x.c[i]
return;
}
// case 3b.
// If x.c[i] and both of x.c[i]’s immediate siblings have t-1 keys, merge x.c[i]
// with one sibling, which involves moving a key from x down into the new
// merged node to become the median key for that node.
if ((i-1<0 ||left->n == T-1) && (i+1 <=x->n || right->n == T-1)) {
if (left->n == T-1) {
// copy x[i] to left
left->key[left->n] = x->key[i];
left->n = left->n + 1;
// remove key[i] from x and also the child
// shrink the size & set the child-0 to left
delete_i(x, i);
int j;
// append x.c[i] into left sibling
for (j=0;j<ci->n;j++) {
left->key[left->n + j] = ci->key[j];
}
for (j=0;j<ci->n+1;j++) {
left->c[left->n + j] = ci->c[j];
}
left->n += ci->n; // left became 2T-1
ci->flag |= MARKFREE; // free ci
ci->n = 0;
WRITE(ci.get());
WRITE(x);
// root check
if (x->n == 0 && x->offset ==0) {
left->flag |= MARKFREE;
WRITE(left.get());
left->flag &= ~MARKFREE;
left->offset = 0;
}
WRITE(left.get());
delete_op(left.get(), k);
return;
} else if (right->n == T-1) {
// copy x[i] to x.c[i]
ci->key[ci->n] = x->key[i];
ci->n = ci->n + 1;
// remove key[i] from x and also the child
// shrink the size & set the child-0 to ci
delete_i(x, i);
int j;
// append right sibling into x.c[i]
for (j=0;j<right->n;j++) {
ci->key[ci->n + j] = right->key[j];
}
for (j=0;j<right->n+1;j++) {
ci->c[ci->n + j] = right->c[j];
}
ci->n += right->n; // ci became 2T-1
right->flag |= MARKFREE; // free right
right->n = 0;
WRITE(right.get());
WRITE(x);
// root check
if (x->n == 0 && x->offset ==0) {
ci->flag |= MARKFREE;
WRITE(ci.get());
ci->flag &= ~MARKFREE;
ci->offset = 0;
}
WRITE(ci.get());
delete_op(ci.get(), k);
return;
}
}
}
/**
* delete ith key & child.
*/
void delete_i(node x, int32_t i) {
int j;
for (j=i;j<x->n-1;j++) {
x->key[j] = x->key[j+1];
}
for (j=i+1;j<x->n;j++) {
x->c[j] = x->c[j+1];
}
x->n = x->n - 1;
}
/**
* Allocate empty node struct.
* A better allocator should be consider in practice, such as
* re-cycling the freed up blocks on disk, so used blocks
* should be traced in some data strucuture, file header maybe.
*/
void * ALLOCBLK() {
node x = new node_t;
x->n = 0;
x->offset = 0;
x->flag = 0;
memset(x->key, 0, sizeof(x->key));
memset(x->c, 0, sizeof(x->c));
memset(x->padding, 0xcc, sizeof(x->padding));
return x;
}
/**
* Load the root block
*/
node ROOT() {
void *root = ALLOCBLK();
lseek(fd, 0, SEEK_SET);
read(fd, root, BLOCKSIZE);
return (node)root;
}
/**
* Read a 4K-block from disk, and returns the node struct.
*/
node READ(node x, int32_t i) {
void *xi = ALLOCBLK();
if (i >=0 && i <= x->n) {
lseek(fd, x->c[i], SEEK_SET);
read(fd, xi, BLOCKSIZE);
}
return (node)xi;
}
/**
* update a node struct to file, create if offset is -1.
*/
void WRITE(node x) {
if (x->flag & ONDISK) {
lseek(fd, x->offset, SEEK_SET);
} else {
x->offset = lseek(fd,0, SEEK_END);
}
x->flag |= ONDISK;
write(fd, x, BLOCKSIZE);
}
};
}