-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathsolver.py
336 lines (253 loc) · 12.9 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
"""solver.py"""
import os
import torch
import torch.optim as optim
from torch_geometric.loader import DataLoader
from tqdm import tqdm
from model import TIGNN
from dataset import load_dataset
from utilities.plot import plot_2D, plot_3D
from utilities.utils import save_log, print_error
class Solver(object):
def __init__(self, args):
self.args = args
# Study Case
self.sys_name = args.sys_name
self.device = torch.device('cuda' if args.gpu and torch.cuda.is_available() else 'cpu')
# Dataset Parameters
self.train_set, self.val_set, self.test_set = load_dataset(args)
self.dims = self.train_set.dims
self.dt = self.train_set.dt
# Normalization
self.stats_z, self.stats_q = self.train_set.get_stats(self.device)
# Training Parameters
self.max_epoch = args.max_epoch
self.lambda_d = args.lambda_d
self.batch_size = args.batch_size
self.noise_var = args.noise_var
# Net Parameters
self.net = TIGNN(args, self.dims).to(self.device).float()
if (args.train == False):
# Load pretrained net
load_name = 'pretrained_' + self.sys_name + '.pt'
load_path = os.path.join(args.dset_dir, load_name)
checkpoint = torch.load(load_path, map_location=self.device)
self.net.load_state_dict(checkpoint)
self.optim = optim.Adam(self.net.parameters(), lr=args.lr)
self.scheduler = optim.lr_scheduler.MultiStepLR(self.optim, milestones=args.miles, gamma=args.gamma)
# Load/Save options
self.output_dir = args.output_dir
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir, exist_ok=True)
def train_model(self):
epoch = 0
train_log = {'epoch':[], 'loss_z':[], 'loss_deg_E':[], 'loss_deg_S':[]}
val_log = {'epoch':[], 'loss_z':[], 'loss_deg_E':[], 'loss_deg_S':[]}
print("\n[Training Started]\n")
# Main training loop
while (epoch < self.max_epoch):
print('[Epoch: {}]'.format(epoch+1))
# Train set loop
loss_z_sum = 0
loss_deg_E_sum, loss_deg_S_sum = 0, 0
for sim in tqdm(range(len(self.train_set)), ncols = 100):
train_loader = DataLoader(self.train_set[sim], batch_size=self.batch_size, shuffle=True)
for snaps in train_loader:
snaps = snaps.to(self.device)
# Get data
z_norm, z1_norm = self.norm(snaps.x, self.stats_z), self.norm(snaps.y, self.stats_z)
n = snaps.n
edge_index = snaps.edge_index
q_0_norm = self.norm(snaps.q_0, self.stats_q) if 'q_0' in snaps.keys else None
f_norm = self.norm(snaps.f, self.stats_q) if 'f' in snaps.keys else None
g = snaps.g if 'g' in snaps.keys else None
batch = snaps.batch if 'batch' in snaps.keys else None
# Add noise
noise = (self.noise_var)**0.5*torch.randn_like(z_norm[n[:,0]==1])
z_norm[n[:,0]==1] = z_norm[n[:,0]==1] + noise
# Net forward pass + Integration
L_net, M_net, dEdz_net, dSdz_net, _, _ = self.net(z_norm, n, edge_index, q_0=q_0_norm, f=f_norm, g=g, batch=batch)
dzdt_net, deg_E, deg_S = self.integrator(L_net, M_net, dEdz_net, dSdz_net)
dzdt = (z1_norm - z_norm)/self.dt
# Compute loss
loss_z = (((dzdt - dzdt_net))**2)[n[:,0]==1].mean()
loss_deg_E = (deg_E**2)[n[:,0]==1].mean()
loss_deg_S = (deg_S**2)[n[:,0]==1].mean()
loss = self.lambda_d*loss_z + (loss_deg_E + loss_deg_S)
loss_z_sum += loss_z.item()
loss_deg_E_sum += loss_deg_E.item()
loss_deg_S_sum += loss_deg_S.item()
# Backpropagation
self.optim.zero_grad()
loss.backward()
self.optim.step()
# Learning rate scheduler
self.scheduler.step()
# Train log
loss_z_train = loss_z_sum / len(train_loader) / len(self.train_set)
loss_deg_E_train = loss_deg_E_sum / len(train_loader) / len(self.train_set)
loss_deg_S_train = loss_deg_S_sum / len(train_loader) / len(self.train_set)
train_log['epoch'].append(epoch+1)
train_log['loss_z'].append(loss_z_train)
train_log['loss_deg_E'].append(loss_deg_E_train)
train_log['loss_deg_S'].append(loss_deg_S_train)
# Validation set loop
loss_z_sum = 0
loss_deg_E_sum, loss_deg_S_sum = 0, 0
for sim in range(len(self.val_set)):
val_loader = DataLoader(self.val_set[sim], batch_size=self.batch_size)
for snaps in val_loader:
snaps = snaps.to(self.device)
# Get data
z_norm, z1_norm = self.norm(snaps.x, self.stats_z), self.norm(snaps.y, self.stats_z)
edge_index = snaps.edge_index
n = snaps.n
q_0_norm = self.norm(snaps.q_0, self.stats_q) if 'q_0' in snaps.keys else None
f_norm = self.norm(snaps.f, self.stats_q) if 'f' in snaps.keys else None
g = snaps.g if 'g' in snaps.keys else None
batch = snaps.batch if 'batch' in snaps.keys else None
# Net forward pass + Integration
L_net, M_net, dEdz_net, dSdz_net, _, _ = self.net(z_norm, n, edge_index, q_0=q_0_norm, f=f_norm, g=g, batch=batch)
dzdt_net, deg_E, deg_S = self.integrator(L_net, M_net, dEdz_net, dSdz_net)
dzdt = (z1_norm - z_norm)/self.dt
# Compute loss
loss_z = (((dzdt - dzdt_net))**2)[n[:,0]==1].mean()
loss_deg_E = (deg_E**2)[n[:,0]==1].mean()
loss_deg_S = (deg_S**2)[n[:,0]==1].mean()
loss_z_sum += loss_z.item()
loss_deg_E_sum += loss_deg_E.item()
loss_deg_S_sum += loss_deg_S.item()
# Validation log
loss_z_val = loss_z_sum / len(val_loader) / len(self.val_set)
loss_deg_E_val = loss_deg_E_sum / len(val_loader) / len(self.val_set)
loss_deg_S_val = loss_deg_S_sum / len(val_loader) / len(self.val_set)
val_log['epoch'].append(epoch+1)
val_log['loss_z'].append(loss_z_val)
val_log['loss_deg_E'].append(loss_deg_E_val)
val_log['loss_deg_S'].append(loss_deg_S_val)
# Print Loss
print('Data Loss: {:1.2e} (Train) / {:1.2e} (Val)'.format(loss_z_train, loss_z_val))
print('Deg Loss (E): {:1.2e} (Train) / {:1.2e} (Val)'.format(loss_deg_E_train, loss_deg_E_val))
print('Deg Loss (S): {:1.2e} (Train) / {:1.2e} (Val)\n'.format(loss_deg_S_train, loss_deg_S_val))
epoch += 1
print("[Training Finished]\n")
# Save net parameters
file_name = 'params_' + self.sys_name + '.pt'
save_dir = os.path.join(self.output_dir, file_name)
torch.save(self.net.state_dict(), save_dir)
# Save logs
save_log(self.args, train_log, 'train')
save_log(self.args, val_log, 'val')
def test_model(self):
print("[Train Set Evaluation]")
train_error = self.compute_error(self.train_set)
print_error(train_error)
print("[Train Evaluation Finished]\n")
print("[Test Set Evaluation]")
test_error = self.compute_error(self.test_set)
print_error(test_error)
print("[Test Evaluation Finished]\n")
# Plot a single simulation
def plot_sim(self, sim=0):
data_list = self.test_set[sim]
if self.sys_name == 'beam':
print("[Plotting]")
z_net, z_gt, _, _ = self.integrate_sim(data_list)
plot_3D(z_net, z_gt, data_list, self.output_dir)
print("[Plot Saved]\n")
elif self.sys_name == 'cylinder':
print("[Plotting]")
z_net, z_gt, _, _ = self.integrate_sim(data_list)
plot_2D(z_net, z_gt, data_list, self.output_dir)
print("[Plot Saved]\n")
# Compute error of all the dataset
def compute_error(self, dataset):
if self.sys_name == 'couette': error = dict({'q':[], 'v':[], 'e':[], 'tau':[]})
elif self.sys_name == 'beam': error = dict({'q':[], 'v':[], 'sigma':[]})
elif self.sys_name == 'cylinder': error = dict({'v':[], 'P':[]})
for data_list in dataset:
# Compute Simulations
z_net, z_gt, _, _ = self.integrate_sim(data_list)
# Compute error
e = z_net[1:].numpy()-z_gt[1:].numpy()
gt = z_gt[1:].numpy()
if self.sys_name == 'couette':
# Position + Velocity + Energy + Conformation Tensor
L2_q = ((e[:,:,[0,1]]**2).sum((1,2)) / (gt[:,:,[0,1]]**2).sum((1,2)))**0.5
L2_v = ((e[:,:,2]**2).sum(1) / (gt[:,:,2]**2).sum(1))**0.5
L2_e = ((e[:,:,3]**2).sum(1) / (gt[:,:,3]**2).sum(1))**0.5
L2_tau = ((e[:,:,4]**2).sum(1) / (gt[:,:,4]**2).sum(1))**0.5
error['q'].extend(list(L2_q))
error['v'].extend(list(L2_v))
error['e'].extend(list(L2_e))
error['tau'].extend(list(L2_tau))
elif self.sys_name == 'beam':
# Position + Velocity + Stress Tensor
L2_q = ((e[:,:,0:3]**2).sum((1,2)) / (gt[:,:,0:3]**2).sum((1,2)))**0.5
L2_v = ((e[:,:,3:6]**2).sum((1,2)) / (gt[:,:,3:6]**2).sum((1,2)))**0.5
L2_sigma = ((e[:,:,6:]**2).sum((1,2)) / (gt[:,:,6:]**2).sum((1,2)))**0.5
error['q'].extend(list(L2_q))
error['v'].extend(list(L2_v))
error['sigma'].extend(list(L2_sigma))
elif self.sys_name == 'cylinder':
# Velocity + Pressure
L2_v = ((e[:,:,[0,1]]**2).sum((1,2)) / (gt[:,:,[0,1]]**2).sum((1,2)))**0.5
L2_P = ((e[:,:,2]**2).sum(1) / (gt[:,:,2]**2).sum(1))**0.5
error['v'].extend(list(L2_v))
error['P'].extend(list(L2_P))
return error
# Integrate a single simulation
def integrate_sim(self, data_list, full_rollout=True):
N_nodes = data_list[0].x.size(0)
dim_z = self.dims['z']
# Preallocation
z_net = torch.zeros(len(data_list)+1, N_nodes, dim_z)
z_gt = torch.zeros(len(data_list)+1, N_nodes, dim_z)
E = torch.zeros(len(data_list), N_nodes, 1)
S = torch.zeros(len(data_list), N_nodes, 1)
# Initial conditions
z_net[0] = data_list[0].x
z_gt[0] = data_list[0].x
# Rollout loop
z = data_list[0].x.to(self.device)
z_norm = self.norm(z, self.stats_z)
loader = DataLoader(data_list)
for t, snap in enumerate(loader):
snap = snap.to(self.device)
# Get data
edge_index = snap.edge_index
n = snap.n
q_0_norm = self.norm(snap.q_0, self.stats_q) if 'q_0' in snap.keys else None
f_norm = self.norm(snap.f, self.stats_q) if 'f' in snap.keys else None
g = snap.g if 'g' in snap.keys else None
batch = snap.batch if 'batch' in snap.keys else None
# Net forward pass + Integration
L_net, M_net, dEdz_net, dSdz_net, E_net, S_net = self.net(z_norm, n, edge_index, q_0=q_0_norm, f=f_norm, g=g, batch=batch)
dzdt_net, _, _ = self.integrator(L_net, M_net, dEdz_net, dSdz_net)
z1_net = z_norm + self.dt*dzdt_net
# Boundary Conditions
for bc in range(n.size(1)-1):
z1_net[n[:,bc+1]==1] = self.norm(snap.y[n[:,bc+1]==1], self.stats_z)
# Save results
z_net[t+1] = self.denorm(z1_net.detach(), self.stats_z)
z_gt[t+1] = snap.y
E[t] = E_net.detach()
S[t] = S_net.detach()
# Update
z_norm = z1_net.detach() if full_rollout else self.norm(snap.y, self.stats_z)
return z_net, z_gt, E.sum(dim=1), S.sum(dim=1)
# Normalization function
def norm(self, z, stats):
return (z - stats['mean']) / stats['std']
# Denormalization function
def denorm(self, z, stats):
return z * stats['std'] + stats['mean']
# Forward-Euler Integrator
def integrator(self, L, M, dEdz, dSdz):
# GENERIC time integration and degeneration
dzdt = torch.bmm(L,dEdz) + torch.bmm(M,dSdz)
deg_E = torch.bmm(M,dEdz)
deg_S = torch.bmm(L,dSdz)
return dzdt[:,:,0], deg_E[:,:,0], deg_S[:,:,0]
if __name__ == '__main__':
pass