|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import segmentation_models_pytorch as smp" |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "markdown", |
| 14 | + "metadata": {}, |
| 15 | + "source": [ |
| 16 | + "## Save to local directory and load back" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "code", |
| 21 | + "execution_count": 2, |
| 22 | + "metadata": {}, |
| 23 | + "outputs": [ |
| 24 | + { |
| 25 | + "name": "stdout", |
| 26 | + "output_type": "stream", |
| 27 | + "text": [ |
| 28 | + "Loading weights from local directory\n" |
| 29 | + ] |
| 30 | + } |
| 31 | + ], |
| 32 | + "source": [ |
| 33 | + "model = smp.Unet()\n", |
| 34 | + "\n", |
| 35 | + "# save the model\n", |
| 36 | + "model.save_pretrained(\"saved-model-dir/unet/\")\n", |
| 37 | + "\n", |
| 38 | + "# load the model\n", |
| 39 | + "restored_model = smp.from_pretrained(\"saved-model-dir/unet/\")" |
| 40 | + ] |
| 41 | + }, |
| 42 | + { |
| 43 | + "cell_type": "markdown", |
| 44 | + "metadata": {}, |
| 45 | + "source": [ |
| 46 | + "## Save model with additional metadata" |
| 47 | + ] |
| 48 | + }, |
| 49 | + { |
| 50 | + "cell_type": "code", |
| 51 | + "execution_count": 6, |
| 52 | + "metadata": {}, |
| 53 | + "outputs": [], |
| 54 | + "source": [ |
| 55 | + "model = smp.Unet()\n", |
| 56 | + "\n", |
| 57 | + "# save the model\n", |
| 58 | + "model.save_pretrained(\n", |
| 59 | + " \"saved-model-dir/unet-with-metadata/\",\n", |
| 60 | + "\n", |
| 61 | + " # additional information to be saved with the model\n", |
| 62 | + " # only \"dataset\" and \"metrics\" are supported\n", |
| 63 | + " dataset=\"PASCAL VOC\", # only string name is supported\n", |
| 64 | + " metrics={ # should be a dictionary with metric name as key and metric value as value\n", |
| 65 | + " \"mIoU\": 0.95,\n", |
| 66 | + " \"accuracy\": 0.96\n", |
| 67 | + " }\n", |
| 68 | + ")" |
| 69 | + ] |
| 70 | + }, |
| 71 | + { |
| 72 | + "cell_type": "code", |
| 73 | + "execution_count": 7, |
| 74 | + "metadata": {}, |
| 75 | + "outputs": [ |
| 76 | + { |
| 77 | + "name": "stdout", |
| 78 | + "output_type": "stream", |
| 79 | + "text": [ |
| 80 | + "---\n", |
| 81 | + "library_name: segmentation-models-pytorch\n", |
| 82 | + "license: mit\n", |
| 83 | + "pipeline_tag: image-segmentation\n", |
| 84 | + "tags:\n", |
| 85 | + "- semantic-segmentation\n", |
| 86 | + "- pytorch\n", |
| 87 | + "- segmentation-models-pytorch\n", |
| 88 | + "languages:\n", |
| 89 | + "- python\n", |
| 90 | + "---\n", |
| 91 | + "# Unet Model Card\n", |
| 92 | + "\n", |
| 93 | + "Table of Contents:\n", |
| 94 | + "- [Load trained model](#load-trained-model)\n", |
| 95 | + "- [Model init parameters](#model-init-parameters)\n", |
| 96 | + "- [Model metrics](#model-metrics)\n", |
| 97 | + "- [Dataset](#dataset)\n", |
| 98 | + "\n", |
| 99 | + "## Load trained model\n", |
| 100 | + "```python\n", |
| 101 | + "import segmentation_models_pytorch as smp\n", |
| 102 | + "\n", |
| 103 | + "model = smp.from_pretrained(\"<save-directory-or-this-repo>\")\n", |
| 104 | + "```\n", |
| 105 | + "\n", |
| 106 | + "## Model init parameters\n", |
| 107 | + "```python\n", |
| 108 | + "model_init_params = {\n", |
| 109 | + " \"encoder_name\": \"resnet34\",\n", |
| 110 | + " \"encoder_depth\": 5,\n", |
| 111 | + " \"encoder_weights\": \"imagenet\",\n", |
| 112 | + " \"decoder_use_batchnorm\": True,\n", |
| 113 | + " \"decoder_channels\": (256, 128, 64, 32, 16),\n", |
| 114 | + " \"decoder_attention_type\": None,\n", |
| 115 | + " \"in_channels\": 3,\n", |
| 116 | + " \"classes\": 1,\n", |
| 117 | + " \"activation\": None,\n", |
| 118 | + " \"aux_params\": None\n", |
| 119 | + "}\n", |
| 120 | + "```\n", |
| 121 | + "\n", |
| 122 | + "## Model metrics\n", |
| 123 | + "```json\n", |
| 124 | + "{\n", |
| 125 | + " \"mIoU\": 0.95,\n", |
| 126 | + " \"accuracy\": 0.96\n", |
| 127 | + "}\n", |
| 128 | + "```\n", |
| 129 | + "\n", |
| 130 | + "## Dataset\n", |
| 131 | + "Dataset name: PASCAL VOC\n", |
| 132 | + "\n", |
| 133 | + "## More Information\n", |
| 134 | + "- Library: https://github.com/qubvel/segmentation_models.pytorch\n", |
| 135 | + "- Docs: https://smp.readthedocs.io/en/latest/\n", |
| 136 | + "\n", |
| 137 | + "This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin)" |
| 138 | + ] |
| 139 | + } |
| 140 | + ], |
| 141 | + "source": [ |
| 142 | + "!cat \"saved-model-dir/unet-with-metadata/README.md\"" |
| 143 | + ] |
| 144 | + }, |
| 145 | + { |
| 146 | + "cell_type": "markdown", |
| 147 | + "metadata": {}, |
| 148 | + "source": [ |
| 149 | + "## Share model with HF Hub" |
| 150 | + ] |
| 151 | + }, |
| 152 | + { |
| 153 | + "cell_type": "code", |
| 154 | + "execution_count": 5, |
| 155 | + "metadata": {}, |
| 156 | + "outputs": [ |
| 157 | + { |
| 158 | + "data": { |
| 159 | + "application/vnd.jupyter.widget-view+json": { |
| 160 | + "model_id": "075ae026811542bdb4030e53b943efc7", |
| 161 | + "version_major": 2, |
| 162 | + "version_minor": 0 |
| 163 | + }, |
| 164 | + "text/plain": [ |
| 165 | + "VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…" |
| 166 | + ] |
| 167 | + }, |
| 168 | + "metadata": {}, |
| 169 | + "output_type": "display_data" |
| 170 | + } |
| 171 | + ], |
| 172 | + "source": [ |
| 173 | + "from huggingface_hub import notebook_login\n", |
| 174 | + "\n", |
| 175 | + "# You only need to run this once on the machine,\n", |
| 176 | + "# the token will be stored for later use\n", |
| 177 | + "notebook_login()" |
| 178 | + ] |
| 179 | + }, |
| 180 | + { |
| 181 | + "cell_type": "code", |
| 182 | + "execution_count": 8, |
| 183 | + "metadata": {}, |
| 184 | + "outputs": [ |
| 185 | + { |
| 186 | + "data": { |
| 187 | + "application/vnd.jupyter.widget-view+json": { |
| 188 | + "model_id": "2921a81d7fd747939b4a425cc17d6104", |
| 189 | + "version_major": 2, |
| 190 | + "version_minor": 0 |
| 191 | + }, |
| 192 | + "text/plain": [ |
| 193 | + "model.safetensors: 0%| | 0.00/97.8M [00:00<?, ?B/s]" |
| 194 | + ] |
| 195 | + }, |
| 196 | + "metadata": {}, |
| 197 | + "output_type": "display_data" |
| 198 | + }, |
| 199 | + { |
| 200 | + "data": { |
| 201 | + "text/plain": [ |
| 202 | + "CommitInfo(commit_url='https://huggingface.co/qubvel-hf/unet-with-metadata/commit/9f821c7bc3a12db827c0da96a31f354ec6ba5253', commit_message='Push model using huggingface_hub.', commit_description='', oid='9f821c7bc3a12db827c0da96a31f354ec6ba5253', pr_url=None, pr_revision=None, pr_num=None)" |
| 203 | + ] |
| 204 | + }, |
| 205 | + "execution_count": 8, |
| 206 | + "metadata": {}, |
| 207 | + "output_type": "execute_result" |
| 208 | + } |
| 209 | + ], |
| 210 | + "source": [ |
| 211 | + "model = smp.Unet()\n", |
| 212 | + "\n", |
| 213 | + "# save the model and share it on the HF Hub (https://huggingface.co/models)\n", |
| 214 | + "model.save_pretrained(\n", |
| 215 | + " \"qubvel-hf/unet-with-metadata/\",\n", |
| 216 | + " push_to_hub=True, # <---------- push the model to the hub\n", |
| 217 | + " private=False, # <---------- make the model private or or public\n", |
| 218 | + " dataset=\"PASCAL VOC\",\n", |
| 219 | + " metrics={\n", |
| 220 | + " \"mIoU\": 0.95,\n", |
| 221 | + " \"accuracy\": 0.96\n", |
| 222 | + " }\n", |
| 223 | + ")\n", |
| 224 | + "\n", |
| 225 | + "# see result here https://huggingface.co/qubvel-hf/unet-with-metadata" |
| 226 | + ] |
| 227 | + } |
| 228 | + ], |
| 229 | + "metadata": { |
| 230 | + "kernelspec": { |
| 231 | + "display_name": ".venv", |
| 232 | + "language": "python", |
| 233 | + "name": "python3" |
| 234 | + }, |
| 235 | + "language_info": { |
| 236 | + "codemirror_mode": { |
| 237 | + "name": "ipython", |
| 238 | + "version": 3 |
| 239 | + }, |
| 240 | + "file_extension": ".py", |
| 241 | + "mimetype": "text/x-python", |
| 242 | + "name": "python", |
| 243 | + "nbconvert_exporter": "python", |
| 244 | + "pygments_lexer": "ipython3", |
| 245 | + "version": "3.10.12" |
| 246 | + } |
| 247 | + }, |
| 248 | + "nbformat": 4, |
| 249 | + "nbformat_minor": 2 |
| 250 | +} |
0 commit comments