-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathstabilizer_code.py
341 lines (271 loc) · 12.5 KB
/
stabilizer_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
# pylint: disable=wrong-or-nonexistent-copyright-notice
from typing import Dict, List, Tuple
import numpy as np
import cirq
# Based on:
# Stabilizer Codes and Quantum Error Correction
# Daniel Gottesman
# https://thesis.library.caltech.edu/2900/2/THESIS.pdf
#
# However, there were some mistakes in the thesis:
# https://www2.perimeterinstitute.ca/personal/dgottesman/thesis-errata.html
#
# An alternative explanation can be found in exercises 10.3 and 10.4 of
# "Quantum Computation and Quantum Information" by Michael Nielsen and Isaac Chuang.
def _build_by_code(mat: np.ndarray) -> List[str]:
"""Transforms a matrix of Booleans into a list of Pauli strings.
Takes into input a matrix of Boolean interpreted as row-vectors, each having dimension 2 * n.
The matrix is converted into another matrix with as many rows, but this time the vectors
contain the letters I, X, Y, and Z representing Pauli operators.
Args:
mat: The input matrix of Booleans.
Returns:
A list of Pauli strings.
"""
out = []
n = mat.shape[1] // 2
for i in range(mat.shape[0]):
ps = ''
for j in range(n):
k = 2 * mat[i, j + n] + mat[i, j]
ps += "IXZY"[k]
out.append(ps)
return out
# It was considered to use scipy.linalg.lu but it seems to be only for real numbers and does
# not allow to restrict only on a section of the matrix.
def _gaussian_elimination(
M: np.ndarray, min_row: int, max_row: int, min_col: int, max_col: int
) -> int:
"""Gaussian elimination for standard form.
Performs a Gaussian elemination of the input matrix and transforms it into its reduced row
echelon form. The elimination is done only on a sub-section of the matrix (specified) by
ranges of rows and columns. The matrix elements are integers {0, 1} interpreted as elements
of GF(2).
In short, this is the implementation of section 4.1 of the thesis.
Args:
M: The input/output matrix
min_row: The minimum row (inclusive) where the perform the elimination.
max_row: The maximum row (exclusive) where the perform the elimination.
min_col: The minimum column (inclusive) where the perform the elimination.
max_col: The maximum column (exclusive) where the perform the elimination.
Returns:
The rank of the matrix.
"""
assert M.shape[1] % 2 == 0
n = M.shape[1] // 2
max_rank = min(max_row - min_row, max_col - min_col)
rank = 0
for r in range(max_rank):
i = min_row + r
j = min_col + r
pivot_rows, pivot_cols = np.nonzero(M[i:max_row, j:max_col])
if pivot_rows.size == 0:
break
pi = pivot_rows[0]
pj = pivot_cols[0]
# Swap the rows:
M[[i, i + pi]] = M[[i + pi, i]]
# Swap the columns:
M[:, [(j + pj), j]] = M[:, [j, (j + pj)]]
# Since the columns in the left and right half of the matrix represent the same qubit, we
# also need to swap the corresponding column in the other half.
j_other_half = (j + n) % (2 * n)
M[:, [(j_other_half + pj), j_other_half]] = M[:, [j_other_half, (j_other_half + pj)]]
# Do the elimination.
for k in range(i + 1, max_row):
if M[k, j] == 1:
M[k, :] = np.mod(M[i, :] + M[k, :], 2)
rank += 1
# Backward replacing to get identity
for r in reversed(range(rank)):
i = min_row + r
j = min_col + r
# Do the elimination in reverse.
for k in range(i - 1, min_row - 1, -1):
if M[k, j] == 1:
M[k, :] = np.mod(M[i, :] + M[k, :], 2)
return rank
def _transfer_to_standard_form(
M: np.ndarray, n: int, k: int
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, int]:
"""Puts the stabilizer matrix in its standardized form, as in section 4.1 of the thesis.
Args:
M: The stabilizier matrix, to be standardized.
n: Dimension of the code words.
k: Dimension of the message words.
Returns:
The standardized matrix.
The logical Xs.
The logical Zs.
The rank of the matrix.
"""
# Performing the Gaussian elimination as in section 4.1
r: int = _gaussian_elimination(M, 0, n - k, 0, n)
_ = _gaussian_elimination(M, r, n - k, n + r, 2 * n)
# Get matrix sub-components, as per equation 4.3:
A2 = M[0:r, (n - k) : n]
C1 = M[0:r, (n + r) : (2 * n - k)]
C2 = M[0:r, (2 * n - k) : (2 * n)]
E = M[r : (n - k), (2 * n - k) : (2 * n)]
X = np.concatenate(
[
np.zeros((k, r), dtype=np.int8),
E.T,
np.eye(k, dtype=np.int8),
np.mod(E.T @ C1.T + C2.T, 2),
np.zeros((k, n - r), np.int8),
],
axis=1,
)
Z = np.concatenate(
[
np.zeros((k, n), dtype=np.int8),
A2.T,
np.zeros((k, n - k - r), dtype=np.int8),
np.eye(k, dtype=np.int8),
],
axis=1,
)
return M, X, Z, r
class StabilizerCode(object):
def __init__(self, group_generators: List[str], correctable_errors: List[str]):
n = len(group_generators[0])
k = n - len(group_generators)
# Build the matrix defined in section 3.4. Each row corresponds to one generator of the
# code, which is a vector of dimension n. The elements of the vectors are Pauli matrices
# encoded as I, X, Y, or Z. However, as described in the thesis, we encode the Pauli
# vector of 2*n Booleans.
M = np.zeros((n - k, 2 * n), np.int8)
for i, group_generator in enumerate(group_generators):
for j, c in enumerate(group_generator):
if c == 'X' or c == 'Y':
M[i, j] = 1
elif c == 'Z' or c == 'Y':
M[i, n + j] = 1
M, X, Z, r = _transfer_to_standard_form(M, n, k)
self.n: int = n
self.k: int = k
self.r: int = r
self.M: List[str] = _build_by_code(M)
self.logical_Xs: List[str] = _build_by_code(X)
self.logical_Zs: List[str] = _build_by_code(Z)
self.syndromes_to_corrections: Dict[Tuple[int, ...], Tuple[str, int]] = {}
for qid in range(self.n):
for op in correctable_errors:
syndrome = tuple(
1 if self.M[r][qid] == 'I' or self.M[r][qid] == op else -1
for r in range(self.n - self.k)
)
self.syndromes_to_corrections[syndrome] = (op, qid)
def encode(
self, additional_qubits: List[cirq.Qid], unencoded_qubits: List[cirq.Qid]
) -> cirq.Circuit:
"""Creates a circuit that encodes the qubits using the code words.
Args:
additional_qubits: The list of self.n - self.k qubits needed to encode the qubit.
unencoded_qubits: The list of self.k qubits that contain the original message.
Returns:
A circuit where the self.n qubits are the encoded qubits.
"""
assert len(additional_qubits) == self.n - self.k
assert len(unencoded_qubits) == self.k
qubits = additional_qubits + unencoded_qubits
circuit = cirq.Circuit()
# Equation 4.8:
# This follows the improvements of:
# https://cs269q.stanford.edu/projects2019/stabilizer_code_report_Y.pdf
for r, x in enumerate(self.logical_Xs):
for j in range(self.r, self.n - self.k):
# By constructions, the first r rows can never contain a Z, as
# r is defined by the Gaussian elimination as the rank.
if x[j] == 'X' or x[j] == 'Y':
circuit.append(
cirq.ControlledOperation(
[unencoded_qubits[r]], cirq.X(additional_qubits[j])
)
)
gate_dict = {'X': cirq.X, 'Y': cirq.Y, 'Z': cirq.Z}
for r in range(self.r):
circuit.append(cirq.H(qubits[r]))
# Let's consider the first stabilizer:
# The reason for adding S gate is Y gate we used is the complex format (i.e. to
# make it Hermitian). It has following four cases: (ignore the phase factor)
# (I+X@P_2...P_k)|0...0> = |0...0> + |1>|\psi>
# (I+Y@P_2...P_k)|0...0> = |0...0> + i|1>|\psi>
# The other forms are not possible in the standard form, by construction.
# The first case means we need [1,1] vector and controlled gates and in the
# second case we need [1, i] vector and controlled gates. Corresponding, it is
# the first column of H and the first column of SH respectively.
# For the other stabilizers, the process can be repeated, as by definition they
# commute.
if self.M[r][r] == 'Y' or self.M[r][r] == 'Z':
circuit.append(cirq.S(qubits[r]))
for n in range(self.n):
if n == r:
continue
if self.M[r][n] == 'I':
continue
op = gate_dict[self.M[r][n]]
circuit.append(cirq.ControlledOperation([qubits[r]], op(qubits[n])))
# At this stage, the state vector should be equal to equations 3.17 and 3.18.
return circuit
def correct(self, qubits: List[cirq.Qid], ancillas: List[cirq.Qid]) -> cirq.Circuit:
"""Corrects the code word.
Creates a correction circuit by computing the syndrome on the ancillas, and then using this
syndrome to correct the qubits.
Args:
qubits: a vector of self.n qubits that contains (potentially corrupted) code words
ancillas: a vector of self.n - self.k qubits that are set to zero and will contain the
syndrome once the circuit is applied.
Returns:
The circuit that both computes the syndrome and uses this syndrome to correct errors.
"""
circuit = cirq.Circuit()
gate_dict = {'X': cirq.X, 'Y': cirq.Y, 'Z': cirq.Z}
# We set the ancillas so that measuring them directly would be the same
# as measuring the qubits with Pauli strings. In other words, we store
# the syndrome inside the ancillas.
for r in range(self.n - self.k):
for n in range(self.n):
if self.M[r][n] == 'Z':
circuit.append(cirq.ControlledOperation([qubits[n]], cirq.X(ancillas[r])))
elif self.M[r][n] == 'X':
circuit.append(cirq.H(qubits[n]))
circuit.append(cirq.ControlledOperation([qubits[n]], cirq.X(ancillas[r])))
circuit.append(cirq.H(qubits[n]))
elif self.M[r][n] == 'Y':
circuit.append(cirq.S(qubits[n]) ** -1)
circuit.append(cirq.H(qubits[n]))
circuit.append(cirq.ControlledOperation([qubits[n]], cirq.X(ancillas[r])))
circuit.append(cirq.H(qubits[n]))
circuit.append(cirq.S(qubits[n]))
# At this stage, the ancillas are equal to the syndrome. Now, we apply
# the errors back to correct the code.
for syndrome, correction in self.syndromes_to_corrections.items():
op = gate_dict[correction[0]]
n = correction[1]
# We do a Boolean operation on the ancillas (i.e. syndrome).
for r in range(self.n - self.k):
if syndrome[r] == 1:
circuit.append(cirq.X(ancillas[r]))
circuit.append(cirq.ControlledOperation(ancillas, op(qubits[n])))
for r in range(self.n - self.k):
if syndrome[r] == 1:
circuit.append(cirq.X(ancillas[r]))
return circuit
def decode(self, qubits: List[cirq.Qid], ancillas: List[cirq.Qid], state_vector) -> List[int]:
"""Computes the output of the circuit by projecting onto the \bar{Z}.
Args:
qubits: the qubits where the (now corrected) code words are stored.
ancillas: the qubits where the syndrome is stored
state_vector: a vector containing the state of the entire circuit
Returns:
The decoded and measured code words.
"""
qubit_map = {qubit: i for i, qubit in enumerate(qubits + ancillas)}
decoded = []
for z in self.logical_Zs:
pauli_string: cirq.PauliString = cirq.PauliString(dict(zip(qubits, z)))
trace = pauli_string.expectation_from_state_vector(state_vector, qubit_map)
decoded.append(round((1 - trace.real) / 2))
return decoded