-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy pathMJ_solar_cell_external_reflectance.py
executable file
·125 lines (104 loc) · 5.05 KB
/
MJ_solar_cell_external_reflectance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import numpy as np
import matplotlib.pyplot as plt
from solcore import siUnits, material, si
from solcore.interpolate import interp1d
from solcore.solar_cell import SolarCell
from solcore.structure import Junction, Layer
from solcore.solar_cell_solver import solar_cell_solver
all_materials = []
def this_dir_file(f):
return "data/" + f
# We need to build the solar cell layer by layer.
# We start from the AR coating. In this case, we load it from an an external file
refl_nm = np.loadtxt(this_dir_file("MgF-ZnS_AR.csv"), unpack=True, delimiter=",")
ref = interp1d(x=siUnits(refl_nm[0], "nm"), y=refl_nm[1],
bounds_error=False, fill_value=0)
# TOP CELL - GaInP
# Now we build the top cell, which requires the n and p sides of GaInP and a window
# layer. We also load the absorption coefficient from an external file. We also add
# some extra parameters needed for the calculation such as the minority carriers
# diffusion lengths
AlInP = material("AlInP")
InGaP = material("GaInP")
window_material = AlInP(Al=0.52)
top_cell_n_material = InGaP(In=0.49, Nd=siUnits(2e18, "cm-3"),
hole_diffusion_length=si("200nm"))
top_cell_p_material = InGaP(In=0.49, Na=siUnits(1e17, "cm-3"),
electron_diffusion_length=si("1um"))
all_materials.append(window_material)
all_materials.append(top_cell_n_material)
all_materials.append(top_cell_p_material)
# MID CELL - InGaAs
# We add manually the absorption coefficient of InGaAs since the one contained in the
# database doesn't cover enough range, keeping in mind that the data has to be
# provided as a function that takes wavelengths (m) as input and
# returns absorption (1/m)
InGaAs = material("InGaAs")
InGaAs_alpha = np.loadtxt(this_dir_file("in01gaas.csv"), unpack=True, delimiter=",")
InGaAs.alpha = interp1d(x=1240e-9 / InGaAs_alpha[0][::-1],
y=InGaAs_alpha[1][::-1], bounds_error=False, fill_value=0)
mid_cell_n_material = InGaAs(In=0.01, Nd=siUnits(3e18, "cm-3"),
hole_diffusion_length=si("500nm"))
mid_cell_p_material = InGaAs(In=0.01, Na=siUnits(1e17, "cm-3"),
electron_diffusion_length=si("5um"))
all_materials.append(mid_cell_n_material)
all_materials.append(mid_cell_p_material)
# BOTTOM CELL - Ge
Ge = material("Ge")
bot_cell_n_material = Ge(Nd=siUnits(2e18, "cm-3"), hole_diffusion_length=si("800nm"))
bot_cell_p_material = Ge(Na=siUnits(1e17, "cm-3"), electron_diffusion_length=si("50um"))
all_materials.append(bot_cell_n_material)
all_materials.append(bot_cell_p_material)
# We add some other properties to the materials, assumed the same in all cases, for
# simplicity. If different, we should have added them above in the definition of the
# materials.
for mat in all_materials:
mat.hole_mobility = 5e-2
mat.electron_mobility = 3.4e-3
mat.hole_mobility = 3.4e-3
mat.electron_mobility = 5e-2
# And, finally, we put everything together, adding also the surface recombination
# velocities. We also add some shading due to the metallisation of the cell = 8%,
# and indicate it has an area of 0.7x0.7 mm2 (converted to m2)
solar_cell = SolarCell(
[
Junction([Layer(si("25nm"), material=window_material, role='window'),
Layer(si("100nm"), material=top_cell_n_material, role='emitter'),
Layer(si("600nm"), material=top_cell_p_material, role='base'),
], sn=1, sp=1, kind='DA'),
Junction([Layer(si("200nm"), material=mid_cell_n_material, role='emitter'),
Layer(si("3000nm"), material=mid_cell_p_material, role='base'),
], sn=1, sp=1, kind='DA'),
Junction([Layer(si("400nm"), material=bot_cell_n_material, role='emitter'),
Layer(si("100um"), material=bot_cell_p_material, role='base'),
], sn=1, sp=1, kind='DA'),
], reflectivity=ref, shading=0.08, cell_area=0.7 * 0.7 / 1e4)
wl = np.linspace(300, 1800, 700) * 1e-9
solar_cell_solver(solar_cell, 'qe', user_options={'wavelength': wl,
'da_mode': 'green'})
plt.figure(1)
plt.plot(wl * 1e9, solar_cell[0].eqe(wl) * 100, 'b', label='GaInP')
plt.plot(wl * 1e9, solar_cell[1].eqe(wl) * 100, 'g', label='InGaAs')
plt.plot(wl * 1e9, solar_cell[2].eqe(wl) * 100, 'r', label='Ge')
plt.legend()
plt.ylim(0, 100)
plt.ylabel('EQE (%)')
plt.xlabel('Wavelength (nm)')
plt.show()
V = np.linspace(0, 3, 300)
solar_cell_solver(solar_cell, 'iv', user_options={'voltages': V,
'light_iv': True,
'wavelength': wl,
'da_mode': 'green'
})
plt.figure(2)
plt.plot(V, solar_cell.iv['IV'][1], 'k', linewidth=3, label='Total')
plt.plot(V, -solar_cell[0].iv(V), 'b', label='GaInP')
plt.plot(V, -solar_cell[1].iv(V), 'g', label='InGaAs')
plt.plot(V, -solar_cell[2].iv(V), 'r', label='Ge')
plt.legend()
plt.ylim(0, 230)
plt.xlim(0, 3)
plt.ylabel('Current (A/m$^2$)')
plt.xlabel('Voltage (V)')
plt.show()