-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patho3_trainer_multiobj_dev.py
executable file
·1951 lines (1826 loc) · 94 KB
/
o3_trainer_multiobj_dev.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
DQN training algorithm drawed by the paper
"RL-MUL: Multiplier Design Optimization with Deep Reinforcement Learning"
"""
import copy
import math
import random
import numpy as np
import torch
import torch.optim as optim
import torch.nn as nn
from torch.distributions.categorical import Categorical
import matplotlib.pyplot as plt
import seaborn as sns
from collections import Counter
import pandas as pd
from paretoset import paretoset
from torch.multiprocessing import Pool, set_start_method
import torch.multiprocessing as mp
from pygmo import hypervolume
from o0_logger import logger
from o5_utils import Transition, MBRLTransition, MultiObjTransition, SharedMultiObjTransition
from o0_global_const import PartialProduct
from o1_environment import RefineEnv, SerialRefineEnv
from ipdb import set_trace
"""
function for scalar q learning
"""
def compute_values(
state_batch, action_batch, state_mask, env, q_policy, target_q_policy, task_index,
device, initial_partial_product, MAX_STAGE_NUM, int_bit_width
):
batch_size = len(state_batch)
state_action_values = torch.zeros(batch_size, device=device)
states = []
for i in range(batch_size):
# compute image state
ct32, ct22, pp, stage_num = env.decompose_compressor_tree(initial_partial_product, state_batch[i].cpu().numpy())
ct32 = torch.tensor(np.array([ct32]))
ct22 = torch.tensor(np.array([ct22]))
if stage_num < MAX_STAGE_NUM-1:
zeros = torch.zeros(1, MAX_STAGE_NUM-1-stage_num, int(int_bit_width*2))
ct32 = torch.cat((ct32, zeros), dim=1)
ct22 = torch.cat((ct22, zeros), dim=1)
state = torch.cat((ct32, ct22), dim=0)
states.append(state.unsqueeze(0))
states = torch.cat(states)
# compute image state
if action_batch is not None:
q_values = q_policy(states.float(), state_mask=state_mask)[task_index]
q_values = q_values.reshape(-1, (int(int_bit_width*2))*4)
# q_values = self.q_policy(state.unsqueeze(0)).reshape((int(self.int_bit_width*2))*4)
for i in range(batch_size):
state_action_values[i] = q_values[i, action_batch[i]]
else:
q_values = target_q_policy(states.float(), is_target=True, state_mask=state_mask)[task_index]
for i in range(batch_size):
state_action_values[i] = q_values[i:i+1].max(1)[0].detach()
return state_action_values
def decode_transition(transitions):
batch = {
"state": [],
"action": [],
"next_state": [],
"reward": [],
"mask": [],
"next_state_mask": [],
"area_reward": [],
"delay_reward": []
}
for transition in transitions:
batch["state"].append(transition.state)
batch["action"].append(transition.action)
batch["next_state"].append(transition.next_state)
batch["reward"].append(transition.reward)
batch["mask"].append(transition.mask)
batch["next_state_mask"].append(transition.next_state_mask)
batch["area_reward"].append(transition.area_reward)
batch["delay_reward"].append(transition.delay_reward)
return batch
def compute_int_rewards(state_batch, state_mask, rnd_predictor, rnd_target, env, initial_partial_product, MAX_STAGE_NUM, int_bit_width):
batch_size = len(state_batch)
int_rewards = torch.zeros(batch_size, device=rnd_predictor.device)
states = []
for i in range(batch_size):
ct32, ct22, pp, stage_num = env.decompose_compressor_tree(initial_partial_product, state_batch[i].cpu().numpy())
ct32 = torch.tensor(np.array([ct32]))
ct22 = torch.tensor(np.array([ct22]))
if stage_num < MAX_STAGE_NUM-1:
zeros = torch.zeros(1, MAX_STAGE_NUM-1-stage_num, int(int_bit_width*2))
ct32 = torch.cat((ct32, zeros), dim=1)
ct22 = torch.cat((ct22, zeros), dim=1)
state = torch.cat((ct32, ct22), dim=0)
states.append(state.unsqueeze(0))
states = torch.cat(states)
with torch.no_grad():
predict_value = rnd_predictor(states.float(), is_target=True, state_mask=state_mask).reshape(-1, (int(int_bit_width*2))*4)
target_value = rnd_target(states.float(), is_target=True, state_mask=state_mask).reshape(-1, (int(int_bit_width*2))*4)
# set_trace()
int_rewards = torch.sum(
(predict_value - target_value)**2, dim=1
)
return int_rewards
def compute_q_loss(replay_memory, env, q_policy, target_q_policy, rnd_predictor, rnd_target, int_reward_run_mean_std, loss_fn, task_weight_vectors, task_index, **q_kwargs):
if len(replay_memory) < q_kwargs["batch_size"]:
loss = 0.
info = {
"is_update": False
}
return loss, info
else:
transitions = replay_memory.sample(q_kwargs["batch_size"])
batch = decode_transition(transitions)
next_state_batch = torch.tensor(np.concatenate(batch["next_state"]))
state_batch = torch.tensor(np.concatenate(batch["state"]))
action_batch = torch.tensor(np.concatenate(batch["action"]))
reward_batch = torch.tensor(np.concatenate(batch["reward"]))
state_mask = torch.tensor(np.concatenate(batch["mask"]))
next_state_mask = torch.tensor(np.concatenate(batch["next_state_mask"]))
area_reward_batch = torch.tensor(np.concatenate(batch["area_reward"]))
delay_reward_batch = torch.tensor(np.concatenate(batch["delay_reward"]))
# TODO: add rnd model update reward int run mean std
# self.update_reward_int_run_mean_std(
# reward_batch.cpu().numpy()
# )
# compute reward int
int_rewards_batch = compute_int_rewards(
next_state_batch, next_state_mask, rnd_predictor, rnd_target, env,
q_kwargs["initial_partial_product"], q_kwargs["MAX_STAGE_NUM"], q_kwargs["int_bit_width"]
)
int_rewards_batch = int_rewards_batch / torch.tensor(np.sqrt(int_reward_run_mean_std.var), device=rnd_predictor.device)
# train_reward_batch = reward_batch.to(self.device) + self.int_reward_scale * int_rewards_batch
q_policy = q_policy.to(q_kwargs["device"])
target_q_policy = target_q_policy.to(q_kwargs["device"])
if q_kwargs["loss_type"] == "mix":
num_task = len(task_weight_vectors)
losses = torch.zeros(num_task, device=q_kwargs["device"])
q_values = []
target_q_values = []
for i, task_weight in enumerate(task_weight_vectors):
train_reward_batch = task_weight[0] * area_reward_batch + task_weight[1] * delay_reward_batch
train_reward_batch = train_reward_batch.to(q_kwargs["device"])
state_action_values = compute_values(
state_batch, action_batch, state_mask,
env, q_policy, target_q_policy, i,
q_kwargs["device"], q_kwargs["initial_partial_product"], q_kwargs["MAX_STAGE_NUM"], q_kwargs["int_bit_width"]
)
next_state_values = compute_values(
next_state_batch, None, next_state_mask,
env, q_policy, target_q_policy, i,
q_kwargs["device"], q_kwargs["initial_partial_product"], q_kwargs["MAX_STAGE_NUM"], q_kwargs["int_bit_width"]
)
target_state_action_values = (next_state_values * q_kwargs["gamma"]) + train_reward_batch
loss = loss_fn(
state_action_values.unsqueeze(1),
target_state_action_values.unsqueeze(1)
)
losses[i] = loss
q_values.append(state_action_values.detach().cpu().numpy())
target_q_values.append(target_state_action_values.detach().cpu().numpy())
mean_loss = torch.mean(losses)
info = {
"loss": mean_loss.item(),
"q_values": q_values,
"target_q_values": target_q_values,
"is_update": True
}
elif q_kwargs["loss_type"] == "separate":
train_reward_batch = task_weight_vectors[task_index][0] * area_reward_batch + task_weight_vectors[task_index][1] * delay_reward_batch
train_reward_batch = train_reward_batch.to(q_kwargs["device"]) + int_rewards_batch * q_kwargs["int_reward_scale"]
state_action_values = compute_values(
state_batch, action_batch, state_mask,
env, q_policy, target_q_policy, task_index,
q_kwargs["device"], q_kwargs["initial_partial_product"], q_kwargs["MAX_STAGE_NUM"], q_kwargs["int_bit_width"]
)
next_state_values = compute_values(
next_state_batch, None, next_state_mask,
env, q_policy, target_q_policy, task_index,
q_kwargs["device"], q_kwargs["initial_partial_product"], q_kwargs["MAX_STAGE_NUM"], q_kwargs["int_bit_width"]
)
target_state_action_values = (next_state_values * q_kwargs["gamma"]) + train_reward_batch
mean_loss = loss_fn(
state_action_values.unsqueeze(1),
target_state_action_values.unsqueeze(1)
)
info = {
"loss": mean_loss.item(),
"q_values": state_action_values.detach().cpu().numpy(),
"target_q_values": target_state_action_values.detach().cpu().numpy(),
"is_update": True,
"int_rewards": int_rewards_batch.cpu().numpy()
}
return mean_loss, info
def copy_gradients(target, source):
for shared_param, param in zip(target.parameters(), source.parameters()):
if param.grad is not None:
shared_param._grad = param.grad.clone().cpu()
"""
function for vector condition q learning
"""
def compute_values_vector_conditionq(
state_batch, action_batch, state_mask, env, q_policy, target_q_policy, task_index,
device, initial_partial_product, MAX_STAGE_NUM, int_bit_width, weight_condition, delay_condition
):
batch_size = len(state_batch)
state_action_values = torch.zeros(batch_size, device=device)
state_action_area_values = torch.zeros(batch_size, device=device)
state_action_delay_values = torch.zeros(batch_size, device=device)
weight_condition = weight_condition.float().unsqueeze(0)
for i in range(batch_size):
# compute image state
ct32, ct22, pp, stage_num = env.decompose_compressor_tree(initial_partial_product, state_batch[i].cpu().numpy())
ct32 = torch.tensor(np.array([ct32]))
ct22 = torch.tensor(np.array([ct22]))
if stage_num < MAX_STAGE_NUM-1:
zeros = torch.zeros(1, MAX_STAGE_NUM-1-stage_num, int(int_bit_width*2))
ct32 = torch.cat((ct32, zeros), dim=1)
ct22 = torch.cat((ct22, zeros), dim=1)
state = torch.cat((ct32, ct22), dim=0)
cur_delay_condition = delay_condition[i:i+1].float().unsqueeze(0)
# compute image state
if action_batch is not None:
q_area_list, q_delay_list, q_values_list = q_policy(state.unsqueeze(0).float(), weight_condition, cur_delay_condition, state_mask=state_mask[i])
q_area = q_area_list[task_index].reshape((int(int_bit_width*2))*4)
q_delay = q_delay_list[task_index].reshape((int(int_bit_width*2))*4)
q_values = q_values_list[task_index].reshape((int(int_bit_width*2))*4)
# q_values = self.q_policy(state.unsqueeze(0)).reshape((int(self.int_bit_width*2))*4)
state_action_values[i] = q_values[action_batch[i]]
state_action_area_values[i] = q_area[action_batch[i]]
state_action_delay_values[i] = q_delay[action_batch[i]]
else:
q_area_list, q_delay_list, q_values_list = target_q_policy(state.unsqueeze(0).float(), weight_condition, cur_delay_condition, is_target=True, state_mask=state_mask[i])
state_action_values[i] = q_values_list[task_index].max(1)[0].detach()
cur_q_values = q_values_list[task_index].reshape((int(int_bit_width*2))*4)
index = torch.argmax(cur_q_values)
state_action_area_values[i] = q_area_list[task_index].squeeze()[index].detach()
state_action_delay_values[i] = q_delay_list[task_index].squeeze()[index].detach()
return state_action_values, state_action_area_values, state_action_delay_values
def decode_transition_vector_conditionq(transitions):
batch = {
"state": [],
"action": [],
"next_state": [],
"reward": [],
"mask": [],
"next_state_mask": [],
"area_reward": [],
"delay_reward": [],
"weight_vector": [],
"delay_condition": []
}
for transition in transitions:
batch["state"].append(transition.state)
batch["action"].append(transition.action)
batch["next_state"].append(transition.next_state)
batch["reward"].append(transition.reward)
batch["mask"].append(transition.mask)
batch["next_state_mask"].append(transition.next_state_mask)
batch["area_reward"].append(transition.area_reward)
batch["delay_reward"].append(transition.delay_reward)
batch["weight_vector"].append(transition.weight_vector)
batch["delay_condition"].append(transition.delay_condition)
return batch
def compute_q_loss_vector_conditionq(replay_memory, env, q_policy, target_q_policy, rnd_predictor, rnd_target, int_reward_run_mean_std, loss_fn, task_weight_vectors, task_index, **q_kwargs):
if len(replay_memory) < q_kwargs["batch_size"]:
loss = 0.
info = {
"is_update": False
}
return loss, info
else:
transitions = replay_memory.sample(q_kwargs["batch_size"])
batch = decode_transition_vector_conditionq(transitions)
next_state_batch = torch.tensor(np.concatenate(batch["next_state"]))
state_batch = torch.tensor(np.concatenate(batch["state"]))
action_batch = torch.tensor(np.concatenate(batch["action"]))
reward_batch = torch.tensor(np.concatenate(batch["reward"]))
state_mask = torch.tensor(np.concatenate(batch["mask"]))
next_state_mask = torch.tensor(np.concatenate(batch["next_state_mask"]))
area_reward_batch = torch.tensor(np.concatenate(batch["area_reward"]))
delay_reward_batch = torch.tensor(np.concatenate(batch["delay_reward"]))
delay_condition_batch = torch.tensor(np.concatenate(batch["delay_condition"]))
weight_condition = torch.tensor(np.array(task_weight_vectors[task_index]))
# compute reward int
int_rewards_batch = compute_int_rewards(
next_state_batch, next_state_mask, rnd_predictor, rnd_target, env,
q_kwargs["initial_partial_product"], q_kwargs["MAX_STAGE_NUM"], q_kwargs["int_bit_width"]
)
int_rewards_batch = int_rewards_batch / torch.tensor(np.sqrt(int_reward_run_mean_std.var), device=rnd_predictor.device)
q_policy = q_policy.to(q_kwargs["device"])
target_q_policy = target_q_policy.to(q_kwargs["device"])
# train reward
train_reward_batch = task_weight_vectors[task_index][0] * area_reward_batch + task_weight_vectors[task_index][1] * delay_reward_batch
train_reward_batch = train_reward_batch.to(q_kwargs["device"]) + int_rewards_batch * q_kwargs["int_reward_scale"]
# area reward
train_area_reward_batch = area_reward_batch.to(q_kwargs["device"]) + int_rewards_batch * q_kwargs["int_reward_scale"]
# delay reward
train_delay_reward_batch = delay_reward_batch.to(q_kwargs["device"]) + int_rewards_batch * q_kwargs["int_reward_scale"]
# comments by zhihai:
#
state_action_values, state_action_area_values, state_action_delay_values = compute_values_vector_conditionq(
state_batch, action_batch, state_mask,
env, q_policy, target_q_policy, task_index,
q_kwargs["device"], q_kwargs["initial_partial_product"], q_kwargs["MAX_STAGE_NUM"], q_kwargs["int_bit_width"],
weight_condition, delay_condition_batch
)
next_state_values, next_state_area_values, next_state_delay_values = compute_values_vector_conditionq(
next_state_batch, None, next_state_mask,
env, q_policy, target_q_policy, task_index,
q_kwargs["device"], q_kwargs["initial_partial_product"], q_kwargs["MAX_STAGE_NUM"], q_kwargs["int_bit_width"],
weight_condition, delay_condition_batch
)
target_state_action_values = (next_state_values * q_kwargs["gamma"]) + train_reward_batch
target_state_action_area_values = (next_state_area_values * q_kwargs["gamma"]) + train_area_reward_batch
target_state_action_delay_values = (next_state_delay_values * q_kwargs["gamma"]) + train_delay_reward_batch
area_loss = loss_fn(
state_action_area_values.unsqueeze(1),
target_state_action_area_values.unsqueeze(1)
)
delay_loss = loss_fn(
state_action_delay_values.unsqueeze(1),
target_state_action_delay_values.unsqueeze(1)
)
mean_loss = area_loss + delay_loss
info = {
"loss": mean_loss.item(),
"q_values": state_action_values.detach().cpu().numpy(),
"target_q_values": target_state_action_values.detach().cpu().numpy(),
"is_update": True,
"int_rewards": int_rewards_batch.cpu().numpy()
}
return mean_loss, info
"""
parallel of function for vector condiiton q learning
"""
def compute_int_rewards_parallel(state_batch, state_mask, rnd_predictor, rnd_target, env, initial_partial_product, MAX_STAGE_NUM, int_bit_width):
batch_size = len(state_batch)
int_rewards = torch.zeros(batch_size, device=rnd_predictor.device)
states = []
for i in range(batch_size):
ct32, ct22, pp, stage_num = env.decompose_compressor_tree(initial_partial_product, state_batch[i].cpu().numpy())
ct32 = torch.tensor(np.array([ct32]))
ct22 = torch.tensor(np.array([ct22]))
if stage_num < MAX_STAGE_NUM-1:
zeros = torch.zeros(1, MAX_STAGE_NUM-1-stage_num, int(int_bit_width*2))
ct32 = torch.cat((ct32, zeros), dim=1)
ct22 = torch.cat((ct22, zeros), dim=1)
state = torch.cat((ct32, ct22), dim=0)
states.append(state.unsqueeze(0))
states = torch.cat(states)
with torch.no_grad():
predict_value = rnd_predictor(states.float(), is_target=True, state_mask=state_mask).reshape(-1, (int(int_bit_width*2))*4)
target_value = rnd_target(states.float(), is_target=True, state_mask=state_mask).reshape(-1, (int(int_bit_width*2))*4)
int_rewards = torch.sum(
(predict_value - target_value)**2, dim=1
)
return int_rewards
def compute_values_vector_conditionq_parallel(
state_batch, action_batch, state_mask, env, q_policy, target_q_policy, task_index,
device, initial_partial_product, MAX_STAGE_NUM, int_bit_width, weight_condition, delay_condition
):
batch_size = len(state_batch)
state_action_values = torch.zeros(batch_size, device=device)
state_action_area_values = torch.zeros(batch_size, device=device)
state_action_delay_values = torch.zeros(batch_size, device=device)
weight_condition = weight_condition.float().unsqueeze(0)
weight_conditions = []
delay_conditions = []
states = []
for i in range(batch_size):
# compute image state
ct32, ct22, pp, stage_num = env.decompose_compressor_tree(initial_partial_product, state_batch[i].cpu().numpy())
ct32 = torch.tensor(np.array([ct32]))
ct22 = torch.tensor(np.array([ct22]))
if stage_num < MAX_STAGE_NUM-1:
zeros = torch.zeros(1, MAX_STAGE_NUM-1-stage_num, int(int_bit_width*2))
ct32 = torch.cat((ct32, zeros), dim=1)
ct22 = torch.cat((ct22, zeros), dim=1)
state = torch.cat((ct32, ct22), dim=0)
states.append(state.unsqueeze(0))
weight_conditions.append(weight_condition)
delay_conditions.append(delay_condition[i:i+1].unsqueeze(0))
states = torch.cat(states)
weight_conditions = torch.cat(weight_conditions)
delay_conditions = torch.cat(delay_conditions)
# compute image state
if action_batch is not None:
q_area_list, q_delay_list, q_values_list = q_policy(states.float(), weight_conditions.float(), delay_conditions.float(), state_mask=state_mask)
q_area = q_area_list[task_index].reshape(-1, (int(int_bit_width*2))*4)
q_delay = q_delay_list[task_index].reshape(-1, (int(int_bit_width*2))*4)
q_values = q_values_list[task_index].reshape(-1, (int(int_bit_width*2))*4)
for i in range(batch_size):
state_action_values[i] = q_values[i, action_batch[i]]
state_action_area_values[i] = q_area[i, action_batch[i]]
state_action_delay_values[i] = q_delay[i, action_batch[i]]
else:
q_area_list, q_delay_list, q_values_list = target_q_policy(states.float(), weight_conditions.float(), delay_conditions.float(), is_target=True, state_mask=state_mask)
for i in range(batch_size):
state_action_values[i] = q_values_list[task_index][i:i+1].max(1)[0].detach()
cur_q_values = q_values_list[task_index].reshape(-1, (int(int_bit_width*2))*4)
for i in range(batch_size):
index = torch.argmax(cur_q_values[i])
state_action_area_values[i] = q_area_list[task_index][i:i+1].squeeze()[index].detach()
state_action_delay_values[i] = q_delay_list[task_index][i:i+1].squeeze()[index].detach()
return state_action_values, state_action_area_values, state_action_delay_values
def compute_q_loss_vector_conditionq_parallel(replay_memory, env, q_policy, target_q_policy, rnd_predictor, rnd_target, int_reward_run_mean_std, loss_fn, task_weight_vectors, task_index, **q_kwargs):
if len(replay_memory) < q_kwargs["batch_size"]:
loss = 0.
info = {
"is_update": False
}
return loss, info
else:
transitions = replay_memory.sample(q_kwargs["batch_size"])
batch = decode_transition_vector_conditionq(transitions)
next_state_batch = torch.tensor(np.concatenate(batch["next_state"]))
state_batch = torch.tensor(np.concatenate(batch["state"]))
action_batch = torch.tensor(np.concatenate(batch["action"]))
reward_batch = torch.tensor(np.concatenate(batch["reward"]))
state_mask = torch.tensor(np.concatenate(batch["mask"]))
next_state_mask = torch.tensor(np.concatenate(batch["next_state_mask"]))
area_reward_batch = torch.tensor(np.concatenate(batch["area_reward"]))
delay_reward_batch = torch.tensor(np.concatenate(batch["delay_reward"]))
delay_condition_batch = torch.tensor(np.concatenate(batch["delay_condition"]))
weight_condition = torch.tensor(np.array(task_weight_vectors[task_index]))
# compute reward int
int_rewards_batch = compute_int_rewards_parallel(
next_state_batch, next_state_mask, rnd_predictor, rnd_target, env,
q_kwargs["initial_partial_product"], q_kwargs["MAX_STAGE_NUM"], q_kwargs["int_bit_width"]
)
int_rewards_batch = int_rewards_batch / torch.tensor(np.sqrt(int_reward_run_mean_std.var), device=rnd_predictor.device)
q_policy = q_policy.to(q_kwargs["device"])
target_q_policy = target_q_policy.to(q_kwargs["device"])
# train reward
train_reward_batch = task_weight_vectors[task_index][0] * area_reward_batch + task_weight_vectors[task_index][1] * delay_reward_batch
train_reward_batch = train_reward_batch.to(q_kwargs["device"]) + int_rewards_batch * q_kwargs["int_reward_scale"]
# area reward
train_area_reward_batch = area_reward_batch.to(q_kwargs["device"]) + int_rewards_batch * q_kwargs["int_reward_scale"]
# delay reward
train_delay_reward_batch = delay_reward_batch.to(q_kwargs["device"]) + int_rewards_batch * q_kwargs["int_reward_scale"]
# comments by zhihai:
#
state_action_values, state_action_area_values, state_action_delay_values = compute_values_vector_conditionq_parallel(
state_batch, action_batch, state_mask,
env, q_policy, target_q_policy, task_index,
q_kwargs["device"], q_kwargs["initial_partial_product"], q_kwargs["MAX_STAGE_NUM"], q_kwargs["int_bit_width"],
weight_condition, delay_condition_batch
)
next_state_values, next_state_area_values, next_state_delay_values = compute_values_vector_conditionq_parallel(
next_state_batch, None, next_state_mask,
env, q_policy, target_q_policy, task_index,
q_kwargs["device"], q_kwargs["initial_partial_product"], q_kwargs["MAX_STAGE_NUM"], q_kwargs["int_bit_width"],
weight_condition, delay_condition_batch
)
target_state_action_values = (next_state_values * q_kwargs["gamma"]) + train_reward_batch
target_state_action_area_values = (next_state_area_values * q_kwargs["gamma"]) + train_area_reward_batch
target_state_action_delay_values = (next_state_delay_values * q_kwargs["gamma"]) + train_delay_reward_batch
area_loss = loss_fn(
state_action_area_values.unsqueeze(1),
target_state_action_area_values.unsqueeze(1)
)
delay_loss = loss_fn(
state_action_delay_values.unsqueeze(1),
target_state_action_delay_values.unsqueeze(1)
)
mean_loss = area_loss + delay_loss
info = {
"loss": mean_loss.item(),
"q_values": state_action_values.detach().cpu().numpy(),
"target_q_values": target_state_action_values.detach().cpu().numpy(),
"is_update": True,
"int_rewards": int_rewards_batch.cpu().numpy()
}
return mean_loss, info
class AsyncMultiTaskDQNAlgorithm():
def __init__(
self,
q_policy,
replay_memory,
rnd_predictor,
rnd_target,
int_reward_run_mean_std,
seed,
# meta-agent
meta_agent,
# rnd kwargs
rnd_lr=3e-4,
update_rnd_freq=10,
int_reward_scale=1,
rnd_reset_freq=20,
# evaluate kwargs
evaluate_freq=5,
evaluate_num=5,
# multi task kwargs
task_weight_vectors=[[4,1],[3,2],[2,3],[1,4]],
target_delay=[
[50,200,500,1200], [50,200,500,1200],
[50,200,500,1200], [50,200,500,1200]
],
# meta_agent_kwargs
meta_agent_optimizer_class='Adam',
meta_agent_lr=1e-3,
meta_action_num=3, # 3 or 2
# dqn kwargs
optimizer_class='Adam',
q_net_lr=1e-4,
batch_size=64,
gamma=0.8,
len_per_episode=25,
total_episodes=400,
target_update_freq=10,
MAX_STAGE_NUM=4,
device='cpu',
action_num=4,
loss_type="mix",
# buffer sharing
is_buffer_sharing=True,
# bit width
bit_width="16_bits",
int_bit_width=16,
str_bit_width=16,
# pareto
reference_point=[2600,1.8],
# adaptive multi-task
adaptive_multi_task_type="heuristics",
meta_agent_type="learning",
start_adaptive_episodes=50,
update_tasks_freq=8,
weight_bias=[0.75,0.5,0.25,0.],
delay_weight=[500,400,400,150],
delay_bias=[1000,600,200,50],
delay_cons=[[1500,1200],[1100,800],[700,200],[100,50]],
weight_cons=[[5,3.75],[3.75,2.5],[2.5,1.25],[1.25,0]],
is_target_delay_change=True,
is_weight_change=True,
# vector condition q
is_vector_condition_q=False,
max_target_delay=[1500,1000,500,100],
is_parallel=False,
is_weight_loss=False,
# env kwargs
env_kwargs={}
):
# 1. 处理好启动并行线程需要的共享变量
# 2. run experiments,并行启动多进程,多线程需要能调用gpu,多线程传入的参数不一样,其他执行的程序是一样的,要上锁
# 3. 按照一个episode 一个episode来,每次并行启动一个episode? 统一更新RND model? 统一分配weight vectors?
self.q_policy = q_policy
self.replay_memory = replay_memory
self.rnd_predictor = rnd_predictor
self.rnd_target = rnd_target
self.int_reward_run_mean_std = int_reward_run_mean_std
self.seed = seed
self.meta_agent = meta_agent.to(device[0])
# meta_agent_kwargs
self.meta_agent_optimizer_class = meta_agent_optimizer_class
self.meta_agent_lr = meta_agent_lr
# get meta_agent optimizer
if isinstance(meta_agent_optimizer_class, str):
meta_agent_optimizer_class = eval('optim.' + meta_agent_optimizer_class)
self.meta_agent_optimizer = meta_agent_optimizer_class(
self.meta_agent.parameters(),
lr=self.meta_agent_lr
)
self.meta_agent_type = meta_agent_type
# rnd optimizer
self.rnd_model_optimizer = meta_agent_optimizer_class(
self.rnd_predictor.parameters(),
lr=rnd_lr
)
self.meta_action_num = meta_action_num
# kwargs
self.rnd_lr = rnd_lr
self.update_rnd_freq = update_rnd_freq
self.rnd_reset_freq = rnd_reset_freq
self.int_reward_scale = int_reward_scale
self.evaluate_freq = evaluate_freq
self.evaluate_num = evaluate_num
self.task_weight_vectors = task_weight_vectors
self.target_delay = target_delay
self.total_steps = [mp.Manager().Value("i", 0) for _ in range(len(task_weight_vectors))]
self.optimizer_class = optimizer_class
self.q_net_lr = q_net_lr
self.batch_size = batch_size
self.gamma = gamma
self.len_per_episode = len_per_episode
self.total_episodes = total_episodes
self.target_update_freq = target_update_freq
self.MAX_STAGE_NUM = MAX_STAGE_NUM
self.device = device
self.action_num = action_num
self.loss_type = loss_type
self.is_buffer_sharing = is_buffer_sharing
self.start_adaptive_episodes = start_adaptive_episodes
self.adaptive_multi_task_type = adaptive_multi_task_type
self.weight_bias = weight_bias
self.delay_weight = delay_weight
self.delay_bias = delay_bias
self.is_target_delay_change = is_target_delay_change
self.is_weight_change = is_weight_change
self.update_tasks_freq = update_tasks_freq
self.delay_cons = delay_cons
self.weight_cons = weight_cons
# vector condition q
self.is_vector_condition_q = is_vector_condition_q
self.max_target_delay = max_target_delay
self.is_parallel = is_parallel
self.is_weight_loss = is_weight_loss
self.bit_width = bit_width
self.int_bit_width = int_bit_width
self.initial_partial_product = PartialProduct[self.bit_width][:-1]
self.env_kwargs = env_kwargs
self.loss_fn = nn.SmoothL1Loss()
self.rnd_loss = nn.MSELoss()
# # pareto pointset
self.pareto_pointset = {
"area": [],
"delay": []
}
self.reference_point = reference_point
logger.log(f"reference_point: {self.reference_point}")
self.current_hv_value = None
## meta-agent datasets
self.meta_agent_datasets = {
"state": None,
"action": None,
"hypervolume": None
}
@staticmethod
def run_episode_vector_conditionq_v3(task_index, task_weight_vectors, shared_q_policy, replay_memory, env, total_steps, loss_fn, rnd_predictor, rnd_target, int_reward_run_mean_std, lock, **kwargs):
log_info = {
"reward": [],
"loss": [],
"q_values": [],
"target_q_values": [],
"avg_ppa": [],
"task_index": task_index,
"eps_threshold": [],
"area": [],
"delay": [],
"int_rewards": []
}
# 1. get optimizer
if isinstance(kwargs["optimizer_class"], str):
optimizer_class = eval('optim.'+kwargs["optimizer_class"])
q_policy_optimizer = optimizer_class(
shared_q_policy.parameters(),
lr=kwargs["q_net_lr"]
)
# 2. copy q policy
q_policy = copy.deepcopy(shared_q_policy)
q_policy.device = kwargs["device"]
env.task_index = task_index
q_policy.task_index = task_index
target_q_policy = copy.deepcopy(q_policy)
q_policy.to(kwargs["device"])
target_q_policy.to(kwargs["device"])
rnd_predictor.to(kwargs["device"])
rnd_predictor.device = kwargs["device"]
rnd_target.to(kwargs["device"])
rnd_target.device = kwargs["device"]
q_kwargs = {
"batch_size": kwargs["batch_size"],
"device": kwargs["device"],
"initial_partial_product": kwargs["initial_partial_product"],
"MAX_STAGE_NUM": kwargs["MAX_STAGE_NUM"],
"int_bit_width": kwargs["int_bit_width"],
"gamma": kwargs["gamma"],
"loss_type": kwargs["loss_type"],
"int_reward_scale": kwargs["int_reward_scale"]
}
# 3. run an episode
# init state
env_state, sel_index = env.reset()
state = copy.deepcopy(env_state)
# newly added preference condition
weight_condition = np.array(task_weight_vectors[task_index])
delay_condition = env.target_delay[0] / env.max_target_delay
for step in range(kwargs["len_per_episode"]):
print(f"task index: {task_index}, steps: {step}")
# logger.log(f"task index: {task_index}, steps: {step}")
# environment interaction
total_steps.value += 1
action, policy_info = q_policy.select_action(
torch.tensor(state), total_steps.value, task_index,
weight_condition, delay_condition
)
next_state, reward, rewards_dict = env.step(action)
_, next_state_policy_info = q_policy.select_action(
torch.tensor(next_state), total_steps.value, task_index,
weight_condition, delay_condition
)
# store data to replay buffer
store_state = np.reshape(state, (1,2,int(kwargs["int_bit_width"]*2)))
store_next_state = np.reshape(next_state, (1,2,int(kwargs["int_bit_width"]*2)))
# shared replay memory via area reward and delay reward
replay_memory.push(
store_state,
action.cpu().numpy(),
store_next_state,
np.array([reward]),
policy_info["mask"].reshape(1,-1).cpu().numpy(),
next_state_policy_info["mask"].reshape(1,-1).cpu().numpy(),
np.array([rewards_dict["area_reward"]]),
np.array([rewards_dict["delay_reward"]]),
weight_condition,
np.array([delay_condition])
)
# update initial state pool
# TODO: environment 得补充下这个函数
# TODO: 环境里面的found best area delay 是取平均值的,得修改下;
env.update_env_initial_state_pool(next_state, rewards_dict, next_state_policy_info['mask'])
# Sync local model with shared model
q_policy.load_state_dict(shared_q_policy.state_dict())
# update q policy
# TODO: add args/kwargs 调整kwargs
# comments: compute_q_loss 计算 q 损失相应修改下;
q_loss, loss_info = compute_q_loss_vector_conditionq_parallel_weight_loss(
replay_memory, env, q_policy, target_q_policy, rnd_predictor, rnd_target, int_reward_run_mean_std,
loss_fn, task_weight_vectors, task_index, **q_kwargs)
if loss_info["is_update"]:
# update shared model
q_loss.backward()
for param in q_policy.parameters():
if param.grad is not None:
param.grad.data.clamp_(-1, 1)
# The critical section begins
lock.acquire()
shared_q_policy.zero_grad()
copy_gradients(shared_q_policy, q_policy)
q_policy_optimizer.step()
lock.release()
# The critical section ends
q_policy.zero_grad()
# log info
log_info["reward"].append(reward)
log_info["avg_ppa"].append(rewards_dict["avg_ppa"])
log_info["loss"].append(q_loss.item())
log_info["q_values"].append(np.mean(loss_info["q_values"]))
log_info["target_q_values"].append(np.mean(loss_info["target_q_values"]))
log_info["eps_threshold"].append(policy_info["eps_threshold"])
log_info["int_rewards"].append(np.mean(loss_info["int_rewards"]))
else:
# log info
log_info["reward"].append(reward)
log_info["avg_ppa"].append(rewards_dict["avg_ppa"])
log_info["loss"].append(0)
log_info["q_values"].append(0)
log_info["target_q_values"].append(0)
log_info["eps_threshold"].append(policy_info["eps_threshold"])
log_info["int_rewards"].append(0)
log_info["area"].append(np.mean(rewards_dict["area"]))
log_info["delay"].append(np.mean(rewards_dict["delay"]))
state = copy.deepcopy(next_state)
# update target q (TODO: SOFT UPDATE)
if total_steps.value % kwargs["target_update_freq"] == 0:
target_q_policy.load_state_dict(
q_policy.state_dict()
)
found_best_ppa = env.found_best_info["found_best_ppa"].value
logger.log(f'run episode task index {task_index} found best ppa: {found_best_ppa}')
return log_info
@staticmethod
def run_episode_vector_conditionq_v2(task_index, task_weight_vectors, shared_q_policy, replay_memory, env, total_steps, loss_fn, rnd_predictor, rnd_target, int_reward_run_mean_std, lock, **kwargs):
log_info = {
"reward": [],
"loss": [],
"q_values": [],
"target_q_values": [],
"avg_ppa": [],
"task_index": task_index,
"eps_threshold": [],
"area": [],
"delay": [],
"int_rewards": []
}
# 1. get optimizer
if isinstance(kwargs["optimizer_class"], str):
optimizer_class = eval('optim.'+kwargs["optimizer_class"])
q_policy_optimizer = optimizer_class(
shared_q_policy.parameters(),
lr=kwargs["q_net_lr"]
)
# 2. copy q policy
q_policy = copy.deepcopy(shared_q_policy)
q_policy.device = kwargs["device"]
env.task_index = task_index
q_policy.task_index = task_index
target_q_policy = copy.deepcopy(q_policy)
q_policy.to(kwargs["device"])
target_q_policy.to(kwargs["device"])
rnd_predictor.to(kwargs["device"])
rnd_predictor.device = kwargs["device"]
rnd_target.to(kwargs["device"])
rnd_target.device = kwargs["device"]
q_kwargs = {
"batch_size": kwargs["batch_size"],
"device": kwargs["device"],
"initial_partial_product": kwargs["initial_partial_product"],
"MAX_STAGE_NUM": kwargs["MAX_STAGE_NUM"],
"int_bit_width": kwargs["int_bit_width"],
"gamma": kwargs["gamma"],
"loss_type": kwargs["loss_type"],
"int_reward_scale": kwargs["int_reward_scale"]
}
# 3. run an episode
# init state
env_state, sel_index = env.reset()
state = copy.deepcopy(env_state)
# newly added preference condition
weight_condition = np.array(task_weight_vectors[task_index])
delay_condition = env.target_delay[0] / env.max_target_delay
for step in range(kwargs["len_per_episode"]):
print(f"task index: {task_index}, steps: {step}")
# logger.log(f"task index: {task_index}, steps: {step}")
# environment interaction
total_steps.value += 1
action, policy_info = q_policy.select_action(
torch.tensor(state), total_steps.value, task_index,
weight_condition, delay_condition
)
next_state, reward, rewards_dict = env.step(action)
_, next_state_policy_info = q_policy.select_action(
torch.tensor(next_state), total_steps.value, task_index,
weight_condition, delay_condition
)
# store data to replay buffer
store_state = np.reshape(state, (1,2,int(kwargs["int_bit_width"]*2)))
store_next_state = np.reshape(next_state, (1,2,int(kwargs["int_bit_width"]*2)))
# shared replay memory via area reward and delay reward
replay_memory.push(
store_state,
action.cpu().numpy(),
store_next_state,
np.array([reward]),
policy_info["mask"].reshape(1,-1).cpu().numpy(),
next_state_policy_info["mask"].reshape(1,-1).cpu().numpy(),
np.array([rewards_dict["area_reward"]]),
np.array([rewards_dict["delay_reward"]]),
weight_condition,
np.array([delay_condition])
)
# update initial state pool
# TODO: environment 得补充下这个函数
# TODO: 环境里面的found best area delay 是取平均值的,得修改下;
env.update_env_initial_state_pool(next_state, rewards_dict, next_state_policy_info['mask'])
# Sync local model with shared model
q_policy.load_state_dict(shared_q_policy.state_dict())
# update q policy
# TODO: add args/kwargs 调整kwargs
# comments: compute_q_loss 计算 q 损失相应修改下;
if kwargs["is_parallel"]:
q_loss, loss_info = compute_q_loss_vector_conditionq_parallel(
replay_memory, env, q_policy, target_q_policy, rnd_predictor, rnd_target, int_reward_run_mean_std,
loss_fn, task_weight_vectors, task_index, **q_kwargs)
else:
q_loss, loss_info = compute_q_loss_vector_conditionq(
replay_memory, env, q_policy, target_q_policy, rnd_predictor, rnd_target, int_reward_run_mean_std,
loss_fn, task_weight_vectors, task_index, **q_kwargs)
if loss_info["is_update"]:
# update shared model
q_loss.backward()
for param in q_policy.parameters():
if param.grad is not None:
param.grad.data.clamp_(-1, 1)
# The critical section begins
lock.acquire()
shared_q_policy.zero_grad()
copy_gradients(shared_q_policy, q_policy)
q_policy_optimizer.step()
lock.release()
# The critical section ends
q_policy.zero_grad()
# log info
log_info["reward"].append(reward)
log_info["avg_ppa"].append(rewards_dict["avg_ppa"])
log_info["loss"].append(q_loss.item())
log_info["q_values"].append(np.mean(loss_info["q_values"]))
log_info["target_q_values"].append(np.mean(loss_info["target_q_values"]))
log_info["eps_threshold"].append(policy_info["eps_threshold"])
log_info["int_rewards"].append(np.mean(loss_info["int_rewards"]))
else:
# log info
log_info["reward"].append(reward)
log_info["avg_ppa"].append(rewards_dict["avg_ppa"])
log_info["loss"].append(0)
log_info["q_values"].append(0)
log_info["target_q_values"].append(0)
log_info["eps_threshold"].append(policy_info["eps_threshold"])
log_info["int_rewards"].append(0)
log_info["area"].append(np.mean(rewards_dict["area"]))
log_info["delay"].append(np.mean(rewards_dict["delay"]))
state = copy.deepcopy(next_state)
# update target q (TODO: SOFT UPDATE)
if total_steps.value % kwargs["target_update_freq"] == 0:
target_q_policy.load_state_dict(
q_policy.state_dict()
)
found_best_ppa = env.found_best_info["found_best_ppa"].value
logger.log(f'run episode task index {task_index} found best ppa: {found_best_ppa}')
return log_info
@staticmethod
def run_episode_vector_conditionq(task_index, task_weight_vectors, shared_q_policy, replay_memory, env, total_steps, loss_fn, rnd_predictor, rnd_target, int_reward_run_mean_std, lock, **kwargs):
log_info = {
"reward": [],
"loss": [],
"q_values": [],
"target_q_values": [],
"avg_ppa": [],
"task_index": task_index,
"eps_threshold": [],
"area": [],
"delay": [],
"int_rewards": []
}
# 1. get optimizer
if isinstance(kwargs["optimizer_class"], str):
optimizer_class = eval('optim.'+kwargs["optimizer_class"])
q_policy_optimizer = optimizer_class(
shared_q_policy.parameters(),
lr=kwargs["q_net_lr"]
)
# 2. copy q policy
q_policy = copy.deepcopy(shared_q_policy)
q_policy.device = kwargs["device"]
env.task_index = task_index
q_policy.task_index = task_index
target_q_policy = copy.deepcopy(q_policy)
q_policy.to(kwargs["device"])
target_q_policy.to(kwargs["device"])
rnd_predictor.to(kwargs["device"])
rnd_predictor.device = kwargs["device"]
rnd_target.to(kwargs["device"])
rnd_target.device = kwargs["device"]