-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patho3_trainer.py
executable file
·6748 lines (6250 loc) · 335 KB
/
o3_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
DQN training algorithm drawed by the paper
"RL-MUL: Multiplier Design Optimization with Deep Reinforcement Learning"
"""
import copy
import math
import numpy as np
import torch
import torch.optim as optim
from torch.optim import lr_scheduler
import torch.nn as nn
import matplotlib.pyplot as plt
import seaborn as sns
from collections import Counter
from collections import deque
import pandas as pd
from paretoset import paretoset
from pygmo import hypervolume
import joblib
import time
from scipy.spatial import ConvexHull, Delaunay
from o0_netlist import NetList
from o0_logger import logger
from o5_utils import Transition, MBRLTransition, MultiObjTransition, PDMultiObjTransition, MBRLMultiObjTransition
from o0_global_const import PartialProduct, DSRFeatureDim, MacPartialProduct
from o2_policy import MBRLPPAModel, BasicBlock
from utils.operators import Operators
from utils.expression_utils import Expression
from ipdb import set_trace
from ysh_logger import get_logger
ysh_logger = get_logger(logger_name='ysh', log_file='ysh_logger_output.txt')
class DQNAlgorithm():
def __init__(
self,
env,
q_policy,
target_q_policy,
replay_memory,
is_target=False,
deterministic=False,
is_softmax=False,
optimizer_class='RMSprop',
q_net_lr=1e-2,
batch_size=64,
gamma=0.8,
target_update_freq=10,
len_per_episode=25,
total_episodes=400,
MAX_STAGE_NUM=4,
# is double q
is_double_q=False,
# agent reset
agent_reset_freq=0,
agent_reset_type="xavier",
device='cpu',
action_num=4,
# pareto
reference_point=[2600, 1.8],
# multiobj
multiobj_type="pure_max", # [pure_max, weight_max]
# store type
store_type="simple", # simple or detail
# end_exp_log
end_exp_freq=25,
is_mac=False
):
self.env = env
self.q_policy = q_policy
self.target_q_policy = target_q_policy
self.replay_memory = replay_memory
# hyperparameter
self.batch_size = batch_size
self.gamma = gamma
self.target_update_freq = target_update_freq
self.len_per_episode = len_per_episode
self.total_episodes = total_episodes
self.MAX_STAGE_NUM = MAX_STAGE_NUM
self.device = device
self.is_target = is_target
self.is_double_q = is_double_q
self.store_type = store_type
self.action_num = action_num
self.multiobj_type = multiobj_type
self.end_exp_freq = end_exp_freq
self.is_mac = is_mac
# optimizer
# TODO: lr, lrdecay, gamma
# TODO: double q
self.q_net_lr = q_net_lr
if isinstance(optimizer_class, str):
optimizer_class = eval('optim.'+optimizer_class)
self.optimizer_class = optimizer_class
self.policy_optimizer = optimizer_class(
self.q_policy.parameters(),
lr=self.q_net_lr
)
# loss function
self.loss_fn = nn.SmoothL1Loss()
# total steps
self.total_steps = 0
self.bit_width = env.bit_width
self.encode_type = ''
if 'booth' in self.bit_width:
self.encode_type = 'booth'
else:
self.encode_type = 'and'
self.int_bit_width = env.int_bit_width
if self.is_mac:
self.initial_partial_product = MacPartialProduct[self.bit_width][:-1]
else:
self.initial_partial_product = PartialProduct[self.bit_width][:-1]
# best ppa found
self.found_best_info = {
"found_best_ppa": 1e5,
"found_best_state": None,
"found_best_area": 1e5,
"found_best_delay": 1e5
}
# agent reset
self.agent_reset_freq = agent_reset_freq
self.agent_reset_type = agent_reset_type
self.deterministic = deterministic
self.is_softmax = is_softmax
# # pareto pointset
self.pareto_pointset = {
"area": [],
"delay": [],
"state": []
}
self.reference_point = reference_point
# configure figure
plt.switch_backend('agg')
def store(
self, state, next_state,
action, reward, mask, next_state_mask
# state_ct32, state_ct22, next_state_ct32, next_state_ct22,
# rewards_dict
):
state = np.reshape(state, (1,2,int(self.int_bit_width*2)))
next_state = np.reshape(next_state, (1,2,int(self.int_bit_width*2)))
self.replay_memory.push(
torch.tensor(state),
action,
torch.tensor(next_state),
torch.tensor([reward]),
mask.reshape(1,-1),
next_state_mask.reshape(1,-1)
# state_ct32, state_ct22, next_state_ct32, next_state_ct22,
# rewards_dict
)
def store_detail(
self, state, next_state,
action, reward, mask, next_state_mask,
state_ct32, state_ct22, next_state_ct32, next_state_ct22,
rewards_dict
):
state = np.reshape(state, (1,2,int(self.int_bit_width*2)))
next_state = np.reshape(next_state, (1,2,int(self.int_bit_width*2)))
self.replay_memory.push(
torch.tensor(state),
action,
torch.tensor(next_state),
torch.tensor([reward]),
mask.reshape(1,-1),
next_state_mask.reshape(1,-1),
state_ct32, state_ct22, next_state_ct32, next_state_ct22,
rewards_dict
)
def compute_values(
self, state_batch, action_batch, state_mask, is_average=False
):
batch_size = len(state_batch)
state_action_values = torch.zeros(batch_size, device=self.device)
net = NetList()
for i in range(batch_size):
cur_state = state_batch[i].cpu().numpy()
# compute image state
ct32, ct22, pp, stage_num = self.env.decompose_compressor_tree(self.initial_partial_product, state_batch[i].cpu().numpy())
if i == 0:
ysh_logger.info('ct32: {}'.format(str(ct32)))
ysh_logger.info('ct22: {}'.format(str(ct22)))
ct32 = torch.tensor(np.array([ct32]))
ct22 = torch.tensor(np.array([ct22]))
if stage_num < self.MAX_STAGE_NUM-1:
zeros = torch.zeros(1, self.MAX_STAGE_NUM-1-stage_num, int(self.int_bit_width*2))
ct32 = torch.cat((ct32, zeros), dim=1)
ct22 = torch.cat((ct22, zeros), dim=1)
state = torch.cat((ct32, ct22), dim=0)
# compute image state
if action_batch is not None:
# reshape 有问题************
q_values = self.q_policy(state.unsqueeze(0).float(), state_mask=state_mask[i]).reshape((int(self.int_bit_width*2))*4)
# q_values = self.q_policy(state.unsqueeze(0)).reshape((int(self.int_bit_width*2))*4)
state_action_values[i] = q_values[action_batch[i]]
else:
q_values = self.target_q_policy(state.unsqueeze(0).float(), is_target=True, state_mask=state_mask[i])
# q_values = self.target_q_policy(state.unsqueeze(0))
# if is_average:
# q_values = (q_values + 1000).detach()
# num = torch.count_nonzero(q_values)
# state_action_values[i] = q_values.sum() / (num+1e-4)
is_with_power = True
if self.is_double_q:
current_q_values = self.q_policy(state.unsqueeze(0).float(), state_mask=state_mask[i]).reshape((int(self.int_bit_width*2))*4)
index = torch.argmax(current_q_values)
state_action_values[i] = q_values.squeeze()[index].detach()
elif is_with_power:
# state -> power
# action_list -> power_list
# 一个问题:q_value in R, power_coefficient 范围?
#
# report_power(bit_width, encode_type, ct, pp_wiring=None)
# ct: [[1, 2, ...], [3, 4, ...]]
#
# state -> power_coefficient
cur_power = net.report_power(math.ceil(self.int_bit_width), self.encode_type, cur_state, None)
mask_with_legality = self.target_q_policy.mask_with_legality(state)
next_states = self.env.get_nextstates(cur_state, mask_with_legality)
next_powers = []
for next_state in next_states:
if next_state == None:
next_powers.append(0)
next_power = net.report_power(math.ceil(self.int_bit_width), self.encode_type, next_state, None)
next_powers.append(next_power)
power_coefficient = torch.zeros(int(self.int_bit_width*2)*4)
for i in range(int(self.int_bit_width*2)*4):
power_coefficient[i] = cur_power - next_powers[i]
q_values_woth_power = q_values.squeeze().detach() * power_coefficient
index = torch.argmax(q_values_woth_power)
state_action_values[i] = q_values.squeeze()[index].detach()
state_action_values[i] = q_values.max(1)[0].detach()
if i == 0:
ysh_logger.info('cur_state: {}'.format(str(cur_state)))
ysh_logger.info('mask_with_legality: {}'.format(str(mask_with_legality)))
ysh_logger.info('cur_power: {}'.format(str(cur_power)))
ysh_logger.info('next_powers: {}'.format(str(next_powers)))
ysh_logger.info('q_values_woth_power: {}'.format(str(q_values_woth_power)))
ysh_logger.info('power_coefficient: {}'.format(str(power_coefficient)))
else:
state_action_values[i] = q_values.max(1)[0].detach()
return state_action_values
def update_q(self):
if len(self.replay_memory) < self.batch_size:
loss = 0.
info = {}
else:
transitions = self.replay_memory.sample(self.batch_size)
batch = Transition(*zip(*transitions))
next_state_batch = torch.cat(batch.next_state)
state_batch = torch.cat(batch.state)
action_batch = torch.cat(batch.action)
reward_batch = torch.cat(batch.reward)
state_mask = torch.cat(batch.mask)
next_state_mask = torch.cat(batch.next_state_mask)
# Compute Q(s_t, a) - the model computes Q(s_t), then we select the
# columns of actions taken. These are the actions which would've been taken
# for each batch state according to policy_net
state_action_values = self.compute_values(
state_batch, action_batch, state_mask
)
next_state_values = self.compute_values(
next_state_batch, None, next_state_mask
)
target_state_action_values = (next_state_values * self.gamma) + reward_batch.to(self.device)
loss = self.loss_fn(
state_action_values.unsqueeze(1),
target_state_action_values.unsqueeze(1)
)
self.policy_optimizer.zero_grad()
loss.backward()
for param in self.q_policy.parameters():
param.grad.data.clamp_(-1, 1)
self.policy_optimizer.step()
info = {
"q_values": state_action_values.detach().cpu().numpy(),
"target_q_values": target_state_action_values.detach().cpu().numpy()
}
return loss, info
def end_experiments(self, episode_num):
# save datasets
save_data_dict = {}
# replay memory
if self.store_type == "detail":
save_data_dict["replay_buffer"] = self.replay_memory.memory
# env initial state pool
if self.env.initial_state_pool_max_len > 0:
save_data_dict["env_initial_state_pool"] = self.env.initial_state_pool
# best state best design
save_data_dict["found_best_info"] = self.found_best_info
# pareto point set
save_data_dict["pareto_area_points"] = self.pareto_pointset["area"]
save_data_dict["pareto_delay_points"] = self.pareto_pointset["delay"]
# test to get full pareto points
# input: found_best_info state
# output: testing pareto points and hypervolume
best_state = copy.deepcopy(self.found_best_info["found_best_state"])
ppas_dict = self.env.get_ppa_full_delay_cons(best_state)
save_pareto_data_dict = self.log_and_save_pareto_points(ppas_dict, episode_num)
save_data_dict["testing_pareto_data"] = save_pareto_data_dict
logger.save_npy(self.total_steps, save_data_dict)
# save q policy model
q_policy_state_dict = self.target_q_policy.state_dict()
logger.save_itr_params(self.total_steps, q_policy_state_dict)
def run_experiments(self):
for episode_num in range(self.total_episodes):
self.run_episode(episode_num)
if episode_num > 0 and (episode_num % self.end_exp_freq == 0):
self.end_experiments(episode_num)
self.end_experiments(episode_num)
def build_state_dict(self, next_state):
ct32 = {}
ct22 = {}
for i in range(next_state.shape[1]):
ct32[f"{i}-th bit column"] = next_state[0][i]
ct22[f"{i}-th bit column"] = next_state[1][i]
return ct32, ct22
def get_mask_stats(self, mask):
number_column = int(len(mask)/4)
valid_number_each_column = np.zeros(number_column)
for i in range(number_column):
cur_column_mask = mask[4*i:4*(i+1)]
valid_number_each_column[i] = torch.sum(cur_column_mask)
counter = Counter(valid_number_each_column)
return counter
def log_mask_stats(self, policy_info):
if policy_info is not None:
# log mask average
logger.tb_logger.add_scalar('mask avg valid number', torch.sum(policy_info["mask"]), global_step=self.total_steps)
logger.tb_logger.add_scalar('simple mask avg valid number', torch.sum(policy_info["simple_mask"]), global_step=self.total_steps)
mask_counter = self.get_mask_stats(policy_info["mask"])
simple_mask_counter = self.get_mask_stats(policy_info["simple_mask"])
for k in mask_counter.keys():
logger.tb_logger.add_scalar(f'mask number {k}', mask_counter[k], global_step=self.total_steps)
for k in simple_mask_counter.keys():
logger.tb_logger.add_scalar(f'simple mask number {k}', simple_mask_counter[k], global_step=self.total_steps)
if "num_valid_action" in policy_info.keys():
logger.tb_logger.add_scalar('number valid action', policy_info["num_valid_action"], global_step=self.total_steps)
if "state_ct32" in policy_info.keys():
if len(policy_info["state_ct32"].shape) == 2:
logger.tb_logger.add_image(
'state ct32', np.array(policy_info["state_ct32"]), global_step=self.total_steps, dataformats='HW'
)
logger.tb_logger.add_image(
'state ct22', np.array(policy_info["state_ct22"]), global_step=self.total_steps, dataformats='HW'
)
logger.tb_logger.add_image(
'state ct32 sum ct22', np.array(policy_info["state_ct32"])+np.array(policy_info["state_ct22"]), global_step=self.total_steps, dataformats='HW'
)
elif len(policy_info["state_ct32"].shape) == 3:
logger.tb_logger.add_image(
'state ct32', np.array(policy_info["state_ct32"]), global_step=self.total_steps, dataformats='CHW'
)
logger.tb_logger.add_image(
'state ct22', np.array(policy_info["state_ct22"]), global_step=self.total_steps, dataformats='CHW'
)
logger.tb_logger.add_image(
'state ct32 sum ct22', np.concatenate((np.array(policy_info["state_ct32"]), np.array(policy_info["state_ct22"])), axis=0), global_step=self.total_steps, dataformats='CHW'
)
# log mask figure
# fig1 = plt.figure()
# x = np.linspace(1, len(policy_info["mask"]), num=len(policy_info["mask"]))
# f1 = plt.plot(x, policy_info["mask"], c='r')
# logger.tb_logger.add_figure('mask', fig1, global_step=self.total_steps)
# fig2 = plt.figure()
# f2 = plt.plot(x, policy_info["simple_mask"], c='b')
# logger.tb_logger.add_figure('simple_mask', fig2, global_step=self.total_steps)
def log_action_stats(self, action):
pass
def log_stats(
self, loss, reward, rewards_dict,
next_state, action, info, policy_info, action_column=0
):
try:
loss = loss.item()
q_values = np.mean(info['q_values'])
target_q_values = np.mean(info['target_q_values'])
positive_rewards_number = info['positive_rewards_number']
except:
loss = loss
q_values = 0.
target_q_values = 0.
positive_rewards_number = 0.
logger.tb_logger.add_scalar('train loss', loss, global_step=self.total_steps)
logger.tb_logger.add_scalar('reward', reward, global_step=self.total_steps)
logger.tb_logger.add_scalar('avg ppa', rewards_dict['avg_ppa'], global_step=self.total_steps)
logger.tb_logger.add_scalar('legal num column', rewards_dict['legal_num_column'], global_step=self.total_steps)
if "legal_num_stage" in rewards_dict.keys():
logger.tb_logger.add_scalar('legal num stage', rewards_dict['legal_num_stage'], global_step=self.total_steps)
if "legal_num_column_pp3" in rewards_dict.keys():
logger.tb_logger.add_scalar('legal_num_column_pp3', rewards_dict['legal_num_column_pp3'], global_step=self.total_steps)
logger.tb_logger.add_scalar('legal_num_column_pp0', rewards_dict['legal_num_column_pp0'], global_step=self.total_steps)
if len(action.shape) <= 2:
logger.tb_logger.add_scalar('action_index', action, global_step=self.total_steps)
if policy_info is not None:
logger.tb_logger.add_scalar('stage_num', policy_info["stage_num"], global_step=self.total_steps)
logger.tb_logger.add_scalar('eps_threshold', policy_info["eps_threshold"], global_step=self.total_steps)
logger.tb_logger.add_scalar('action_column', action_column, global_step=self.total_steps)
logger.tb_logger.add_scalar('positive_rewards_number', positive_rewards_number, global_step=self.total_steps)
try:
for i in range(len(self.found_best_info)):
logger.tb_logger.add_scalar(f'best ppa {i}-th weight', self.found_best_info[i]["found_best_ppa"], global_step=self.total_steps)
logger.tb_logger.add_scalar(f'best area {i}-th weight', self.found_best_info[i]["found_best_area"], global_step=self.total_steps)
logger.tb_logger.add_scalar(f'best delay {i}-th weight', self.found_best_info[i]["found_best_delay"], global_step=self.total_steps)
except:
logger.tb_logger.add_scalar(f'best ppa', self.found_best_info["found_best_ppa"], global_step=self.total_steps)
logger.tb_logger.add_scalar(f'best area', self.found_best_info["found_best_area"], global_step=self.total_steps)
logger.tb_logger.add_scalar(f'best delay', self.found_best_info["found_best_delay"], global_step=self.total_steps)
# log q values info
logger.tb_logger.add_scalar('q_values', q_values, global_step=self.total_steps)
logger.tb_logger.add_scalar('target_q_values', target_q_values, global_step=self.total_steps)
# log state
# ct32, ct22 = self.build_state_dict(next_state)
# logger.tb_logger.add_scalars(
# 'compressor 32', ct32, global_step=self.total_steps)
# logger.tb_logger.add_scalars(
# 'compressor 22', ct22, global_step=self.total_steps)
# logger.tb_logger.add_image(
# 'state image', next_state, global_step=self.total_steps, dataformats='HW'
# )
# log wallace area wallace delay
logger.tb_logger.add_scalar('wallace area', self.env.wallace_area, global_step=self.total_steps)
logger.tb_logger.add_scalar('wallace delay', self.env.wallace_delay, global_step=self.total_steps)
# log env initial state pool
# if self.env.initial_state_pool_max_len > 0:
# avg_area, avg_delay = self.get_env_pool_log()
# logger.tb_logger.add_scalars(
# 'env state pool area', avg_area, global_step=self.total_steps)
# logger.tb_logger.add_scalars(
# 'env state pool delay', avg_delay, global_step=self.total_steps)
# log mask stats
self.log_mask_stats(policy_info)
self.log_action_stats(action)
def get_env_pool_log(self):
avg_area = {}
avg_delay = {}
for i in range(len(self.env.initial_state_pool)):
avg_area[f"{i}-th state area"] = self.env.initial_state_pool[i]["area"]
avg_delay[f"{i}-th state delay"] = self.env.initial_state_pool[i]["delay"]
return avg_area, avg_delay
def update_env_initial_state_pool(self, state, rewards_dict, state_mask):
if self.env.initial_state_pool_max_len > 0:
if self.env.store_state_type == "less":
if self.found_best_info['found_best_ppa'] > rewards_dict['avg_ppa']:
# push the best ppa state into the initial pool
avg_area = np.mean(rewards_dict['area'])
avg_delay = np.mean(rewards_dict['delay'])
self.env.initial_state_pool.append(
{
"state": copy.deepcopy(state),
"area": avg_area,
"delay": avg_delay,
"ppa": rewards_dict['avg_ppa'],
"count": 1,
"state_mask": state_mask,
"state_type": "best_ppa",
"normalize_area": rewards_dict["normalize_area"],
"normalize_delay": rewards_dict["normalize_delay"]
}
)
elif self.env.store_state_type == "leq":
if self.found_best_info['found_best_ppa'] >= rewards_dict['avg_ppa']:
# push the state to the initial pool
avg_area = np.mean(rewards_dict['area'])
avg_delay = np.mean(rewards_dict['delay'])
self.env.initial_state_pool.append(
{
"state": copy.deepcopy(state),
"area": avg_area,
"delay": avg_delay,
"ppa": rewards_dict['avg_ppa'],
"count": 1,
"state_mask": state_mask,
"state_type": "best_ppa"
}
)
elif self.env.store_state_type == "ppa_with_diversity":
# store best ppa state
if self.found_best_info['found_best_ppa'] > rewards_dict['avg_ppa']:
# push the state to the initial pool
avg_area = np.mean(rewards_dict['area'])
avg_delay = np.mean(rewards_dict['delay'])
self.env.initial_state_pool.append(
{
"state": copy.deepcopy(state),
"area": avg_area,
"delay": avg_delay,
"ppa": rewards_dict['avg_ppa'],
"count": 1,
"state_mask": state_mask,
"state_type": "best_ppa"
}
)
# store better diversity state
elif rewards_dict['avg_ppa'] < self.env.initial_state_pool[0]["ppa"]:
number_states = len(self.env.initial_state_pool)
worse_state_distances = np.zeros(number_states-1)
cur_state_distances = np.zeros(number_states)
for i in range(number_states):
cur_state_dis = np.linalg.norm(
state - self.env.initial_state_pool[i]["state"],
ord=2
)
cur_state_distances[i] = cur_state_dis
if i == 0:
continue
worse_state_dis = np.linalg.norm(
self.env.initial_state_pool[0]["state"] - self.env.initial_state_pool[i]["state"],
ord=2
)
worse_state_distances[i-1] = worse_state_dis
worse_state_min_distance = np.min(worse_state_distances)
cur_state_min_distance = np.min(cur_state_distances)
if cur_state_min_distance > worse_state_min_distance:
# push the diverse state into the pool
avg_area = np.mean(rewards_dict['area'])
avg_delay = np.mean(rewards_dict['delay'])
self.env.initial_state_pool.append(
{
"state": copy.deepcopy(state),
"area": avg_area,
"delay": avg_delay,
"ppa": rewards_dict['avg_ppa'],
"count": 1,
"state_mask": state_mask,
"state_type": "diverse"
}
)
if self.found_best_info["found_best_ppa"] > rewards_dict['avg_ppa']:
self.found_best_info["found_best_ppa"] = rewards_dict['avg_ppa']
self.found_best_info["found_best_state"] = copy.deepcopy(state)
self.found_best_info["found_best_area"] = np.mean(rewards_dict['area'])
self.found_best_info["found_best_delay"] = np.mean(rewards_dict['delay'])
def reset_agent(self):
if self.total_steps % self.agent_reset_freq == 0:
self.q_policy.partially_reset(
reset_type=self.agent_reset_type
)
self.target_q_policy.partially_reset(
reset_type=self.agent_reset_type
)
def _combine(self):
combine_array = []
for i in range(len(self.pareto_pointset["area"])):
point = [self.pareto_pointset["area"][i], self.pareto_pointset["delay"][i]]
combine_array.append(point)
return np.array(combine_array)
def process_and_log_pareto(self, episode_num, episode_area, episode_delay):
# 1. compute pareto pointset
area_list, delay_list = episode_area, episode_delay
area_list.extend(self.pareto_pointset["area"])
delay_list.extend(self.pareto_pointset["delay"])
data_points = pd.DataFrame(
{
"area": area_list,
"delay": delay_list
}
)
pareto_mask = paretoset(data_points, sense=["min", "min"])
pareto_points = data_points[pareto_mask]
new_pareto_area_list = pareto_points["area"].values.tolist()
new_pareto_delay_list = pareto_points["delay"].values.tolist()
self.pareto_pointset["area"] = new_pareto_area_list
self.pareto_pointset["delay"] = new_pareto_delay_list
# 2. compute hypervolume given pareto set and reference point
pareto_point_array = self._combine()
hv = hypervolume(pareto_point_array)
hv_value = hv.compute(self.reference_point)
logger.tb_logger.add_scalar('hypervolume', hv_value, global_step=episode_num)
logger.log(f"episode {episode_num}, hypervolume: {hv_value}")
# 3. log pareto points
fig1 = plt.figure()
x = new_pareto_area_list
y = new_pareto_delay_list
f1 = plt.scatter(x, y, c='r')
logger.tb_logger.add_figure('pareto points', fig1, global_step=episode_num)
def log_and_save_pareto_points(self, ppas_dict, episode_num):
save_data_dict = {}
# save ppa_csv
save_data_dict["testing_full_ppa"] = ppas_dict
# compute pareto points
area_list = ppas_dict["area"]
delay_list = ppas_dict["delay"]
data_points = pd.DataFrame(
{
"area": area_list,
"delay": delay_list
}
)
pareto_mask = paretoset(data_points, sense=["min", "min"])
pareto_points = data_points[pareto_mask]
true_pareto_area_list = pareto_points["area"].values.tolist()
true_pareto_delay_list = pareto_points["delay"].values.tolist()
combine_array = []
for i in range(len(true_pareto_area_list)):
point = [true_pareto_area_list[i], true_pareto_delay_list[i]]
combine_array.append(point)
hv = hypervolume(combine_array)
hv_value = hv.compute(self.reference_point)
# save hypervolume and log hypervolume
save_data_dict["testing_hypervolume"] = hv_value
logger.tb_logger.add_scalar('testing hypervolume', hv_value, global_step=episode_num)
# save pareto points and log pareto points
fig1 = plt.figure()
x = true_pareto_area_list
y = true_pareto_delay_list
f1 = plt.scatter(x, y, c='r')
logger.tb_logger.add_figure('testing pareto points', fig1, global_step=episode_num)
save_data_dict["testing_pareto_points_area"] = true_pareto_area_list
save_data_dict["testing_pareto_points_delay"] = true_pareto_delay_list
return save_data_dict
def run_episode(self, episode_num):
episode_area = []
episode_delay = []
# init state
env_state, sel_index = self.env.reset()
state = copy.deepcopy(env_state)
for step in range(self.len_per_episode):
self.total_steps += 1
# environment interaction
action, policy_info = self.q_policy.select_action(
torch.tensor(state), self.total_steps,
deterministic=self.deterministic,
is_softmax=self.is_softmax
)
logger.log(f"total steps: {self.total_steps}, action: {action}")
next_state, reward, rewards_dict = self.env.step(action)
_, next_state_policy_info = self.q_policy.select_action(
torch.tensor(next_state), self.total_steps,
deterministic=self.deterministic,
is_softmax=self.is_softmax
)
# store data
if self.store_type == "simple":
self.store(state, next_state, action, reward, policy_info['mask'], next_state_policy_info['mask'])
elif self.store_type == "detail":
self.store_detail(state, next_state, action, reward, policy_info['mask'], next_state_policy_info['mask'], policy_info['state_ct32'], policy_info['state_ct22'], next_state_policy_info['state_ct32'], next_state_policy_info['state_ct22'], rewards_dict)
# update initial state pool
self.update_env_initial_state_pool(next_state, rewards_dict, next_state_policy_info['mask'])
# update q policy
loss, info = self.update_q()
# update target q (TODO: SOFT UPDATE)
if self.total_steps % self.target_update_freq == 0:
self.target_q_policy.load_state_dict(
self.q_policy.state_dict()
)
state = copy.deepcopy(next_state)
# reset agent
if self.agent_reset_freq > 0:
self.reset_agent()
# log datasets
self.log_stats(
loss, reward, rewards_dict,
next_state, action, info, policy_info
)
avg_ppa = rewards_dict['avg_ppa']
episode_area.extend(rewards_dict["area"])
episode_delay.extend(rewards_dict["delay"])
logger.log(f"total steps: {self.total_steps}, avg ppa: {avg_ppa}")
# update target q
self.target_q_policy.load_state_dict(
self.q_policy.state_dict()
)
# process and log pareto
self.process_and_log_pareto(episode_num, episode_area, episode_delay)
class RNDDQNAlgorithm(DQNAlgorithm):
def __init__(
self,
env,
q_policy,
target_q_policy,
replay_memory,
rnd_predictor,
rnd_target,
int_reward_run_mean_std,
rnd_lr=3e-4,
update_rnd_freq=10,
int_reward_scale=1,
evaluate_freq=5,
evaluate_num=5,
bonus_type="rnd", # rnd/noveld
noveld_alpha=0.1,
# n step q-learning
n_step_num=5,
**dqn_alg_kwargs
):
super().__init__(
env,
q_policy,
target_q_policy,
replay_memory,
**dqn_alg_kwargs
)
# rnd model
self.rnd_predictor = rnd_predictor
self.rnd_target = rnd_target
self.int_reward_run_mean_std = int_reward_run_mean_std
self.rnd_lr = rnd_lr
self.update_rnd_freq = update_rnd_freq
self.int_reward_scale = int_reward_scale
self.evaluate_freq = evaluate_freq
self.evaluate_num = evaluate_num
self.bonus_type = bonus_type
self.noveld_alpha = noveld_alpha
self.n_step_num = n_step_num
# optimizer
self.rnd_model_optimizer = self.optimizer_class(
self.rnd_predictor.parameters(),
lr=self.rnd_lr
)
# loss func
self.rnd_loss = nn.MSELoss()
# log
self.rnd_loss_item = 0.
self.rnd_int_rewards = 0.
self.rnd_ext_rewards = 0.
# cosine similarity
self.cos = torch.nn.CosineSimilarity(dim=1, eps=1e-6)
def update_reward_int_run_mean_std(self, rewards):
mean, std, count = np.mean(rewards), np.std(rewards), len(rewards)
self.int_reward_run_mean_std.update_from_moments(
mean, std**2, count
)
def update_rnd_model(
self, state_batch, state_mask
):
loss = torch.zeros(self.batch_size, device=self.device)
for i in range(self.batch_size):
ct32, ct22, pp, stage_num = self.env.decompose_compressor_tree(self.initial_partial_product, state_batch[i].cpu().numpy())
ct32 = torch.tensor(np.array([ct32]))
ct22 = torch.tensor(np.array([ct22]))
if stage_num < self.MAX_STAGE_NUM-1:
zeros = torch.zeros(1, self.MAX_STAGE_NUM-1-stage_num, int(self.int_bit_width*2))
ct32 = torch.cat((ct32, zeros), dim=1)
ct22 = torch.cat((ct22, zeros), dim=1)
state = torch.cat((ct32, ct22), dim=0)
predict_value = self.rnd_predictor(state.unsqueeze(0).float(), is_target=self.is_target, state_mask=state_mask[i]).reshape((int(self.int_bit_width*2))*4)
with torch.no_grad():
target_value = self.rnd_target(state.unsqueeze(0).float(), is_target=self.is_target, state_mask=state_mask[i]).reshape((int(self.int_bit_width*2))*4)
# set_trace()
loss[i] = self.rnd_loss(
predict_value, target_value
)
loss = torch.mean(loss)
self.rnd_model_optimizer.zero_grad()
loss.backward()
for param in self.rnd_predictor.parameters():
param.grad.data.clamp_(-1, 1)
self.rnd_model_optimizer.step()
# update log
self.rnd_loss_item = loss.item()
return loss
def compute_int_rewards(
self, state_batch, state_mask
):
batch_size = len(state_batch)
int_rewards = torch.zeros(batch_size, device=self.device)
for i in range(batch_size):
ct32, ct22, pp, stage_num = self.env.decompose_compressor_tree(self.initial_partial_product, state_batch[i].cpu().numpy())
ct32 = torch.tensor(np.array([ct32]))
ct22 = torch.tensor(np.array([ct22]))
if stage_num < self.MAX_STAGE_NUM-1:
zeros = torch.zeros(1, self.MAX_STAGE_NUM-1-stage_num, int(self.int_bit_width*2))
ct32 = torch.cat((ct32, zeros), dim=1)
ct22 = torch.cat((ct22, zeros), dim=1)
state = torch.cat((ct32, ct22), dim=0)
with torch.no_grad():
predict_value = self.rnd_predictor(state.unsqueeze(0).float(), is_target=self.is_target, state_mask=state_mask[i]).reshape((int(self.int_bit_width*2))*4)
target_value = self.rnd_target(state.unsqueeze(0).float(), is_target=self.is_target, state_mask=state_mask[i]).reshape((int(self.int_bit_width*2))*4)
# set_trace()
int_rewards[i] = torch.sum(
(predict_value - target_value)**2
)
return int_rewards
def update_q(self):
if len(self.replay_memory) < self.batch_size:
loss = 0.
info = {}
else:
transitions = self.replay_memory.sample(self.batch_size)
batch = Transition(*zip(*transitions))
next_state_batch = torch.cat(batch.next_state)
state_batch = torch.cat(batch.state)
action_batch = torch.cat(batch.action)
reward_batch = torch.cat(batch.reward)
state_mask = torch.cat(batch.mask)
next_state_mask = torch.cat(batch.next_state_mask)
# update reward int run mean std
self.update_reward_int_run_mean_std(
reward_batch.cpu().numpy()
)
# compute reward int
int_rewards_batch = self.compute_int_rewards(
next_state_batch, next_state_mask
)
if self.bonus_type == "noveld":
int_rewards_last_state_batch = self.compute_int_rewards(
state_batch, state_mask
)
int_rewards_batch = int_rewards_batch - self.noveld_alpha * int_rewards_last_state_batch
int_rewards_batch = int_rewards_batch / torch.tensor(np.sqrt(self.int_reward_run_mean_std.var), device=self.device)
train_reward_batch = reward_batch.to(self.device) + self.int_reward_scale * int_rewards_batch
# Compute Q(s_t, a) - the model computes Q(s_t), then we select the
# columns of actions taken. These are the actions which would've been taken
# for each batch state according to policy_net
state_action_values = self.compute_values(
state_batch, action_batch, state_mask
)
next_state_values = self.compute_values(
next_state_batch, None, next_state_mask
)
target_state_action_values = (next_state_values * self.gamma) + train_reward_batch
loss = self.loss_fn(
state_action_values.unsqueeze(1),
target_state_action_values.unsqueeze(1)
)
self.policy_optimizer.zero_grad()
loss.backward()
for param in self.q_policy.parameters():
param.grad.data.clamp_(-1, 1)
self.policy_optimizer.step()
info = {
"q_values": state_action_values.detach().cpu().numpy(),
"target_q_values": target_state_action_values.detach().cpu().numpy(),
"positive_rewards_number": torch.sum(torch.gt(reward_batch.cpu(), 0).float())
}
self.rnd_int_rewards = np.mean(int_rewards_batch.cpu().numpy())
self.rnd_ext_rewards = np.mean(reward_batch.cpu().numpy())
if self.total_steps % self.update_rnd_freq == 0:
rnd_loss = self.update_rnd_model(
next_state_batch, next_state_mask
)
return loss, info
def get_ppa_value(self):
assert self.env.initial_state_pool_max_len > 0
number_states = len(self.env.initial_state_pool)
state_value = np.zeros(number_states)
info_count = np.zeros(number_states)
for i in range(number_states):
avg_ppa = self.env.initial_state_pool[i]["ppa"]
state_count = self.env.initial_state_pool[i]["count"]
# upper confidence bound
score = (5 - avg_ppa / self.env.ppa_scale) * 20 + 1 / math.sqrt(state_count)
state_value[i] = score
info_count[i] = state_count
return state_value, info_count
def _get_env_pool_value_novelty(self, value_type):
assert self.env.initial_state_pool_max_len > 0
number_states = len(self.env.initial_state_pool)
states_batch = []
states_mask = []
if value_type == "ppa_value":
state_value, info_count = self.get_ppa_value()
return state_value, info_count
for i in range(number_states):
states_batch.append(
torch.tensor(
self.env.initial_state_pool[i]["state"]
)
)
states_mask.append(
self.env.initial_state_pool[i]["state_mask"]
)
if value_type == "novelty":
state_novelty = self.compute_int_rewards(states_batch, states_mask)
return state_novelty.cpu().numpy()
elif value_type == "value":
state_value = self.compute_values(
states_batch, None, states_mask
)
return state_value.cpu().numpy()
elif value_type == "average_value":
state_value = self.compute_values(
states_batch, None, states_mask, is_average=True
)
return state_value.cpu().numpy()
else:
raise NotImplementedError
def log_state_mutual_distances(self, state_mutual_distances):
fig1 = plt.figure()
f1 = plt.imshow(state_mutual_distances)
number_states = state_mutual_distances.shape[0]
# Loop over data dimensions and create text annotations.
for i in range(number_states):
for j in range(number_states):
text = plt.text(j, i, state_mutual_distances[i, j],
ha="center", va="center", color="w")
logger.tb_logger.add_figure('state mutual distance', fig1, global_step=self.total_steps)
def log_env_pool(self):
total_state_num = len(self.env.initial_state_pool)
best_ppa_state_num = 0
diverse_state_num = 0
for i in range(total_state_num):
if self.env.initial_state_pool[i]["state_type"] == "best_ppa":
best_ppa_state_num += 1
elif self.env.initial_state_pool[i]["state_type"] == "diverse":
diverse_state_num += 1
logger.tb_logger.add_scalar('env pool total num', total_state_num, global_step=self.total_steps)
logger.tb_logger.add_scalar('env pool best ppa num', best_ppa_state_num, global_step=self.total_steps)
logger.tb_logger.add_scalar('env pool diverse num', diverse_state_num, global_step=self.total_steps)
def run_episode(self, episode_num):
# reset state
episode_area = []
episode_delay = []
state_value = 0.
info_count = None
if self.env.random_reset_steps >= self.total_steps:
# random reset
env_state, sel_index = self.env.reset()
state = copy.deepcopy(env_state)
else:
# reset with value or novelty
if self.env.reset_state_policy == "novelty_driven":
state_novelty = self._get_env_pool_value_novelty("novelty")
env_state, sel_index = self.env.reset(state_novelty=state_novelty)
state = copy.deepcopy(env_state)
elif self.env.reset_state_policy in ["softmax_value_driven", "value_driven"]:
state_value = self._get_env_pool_value_novelty("value")
env_state, sel_index = self.env.reset(state_value=state_value)
state = copy.deepcopy(env_state)
elif self.env.reset_state_policy in ["average_softmax_value_driven", "average_value_driven"]:
state_value = self._get_env_pool_value_novelty("average_value")
env_state, sel_index = self.env.reset(state_value=state_value)
state = copy.deepcopy(env_state)
elif self.env.reset_state_policy == "ppa_driven":
state_value, info_count = self._get_env_pool_value_novelty("ppa_value")