-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patho1_environment_refine.py
executable file
·629 lines (569 loc) · 22.4 KB
/
o1_environment_refine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
import logging
import os
import copy
import numpy as np
from collections import deque
import json
import matplotlib.pyplot as plt
from o0_rtl_tasks import EvaluateWorker, PowerSlewConsulter
from o0_state import State, legal_FA_list, legal_HA_list
from o0_logger import logger
# fmt: on
class BaseEnv:
def __init__(self, seed, **env_kwargs):
self.seed = seed
self.env_kwargs = env_kwargs
self.set_seed()
def set_seed(self, seed=None):
if seed:
self.seed = seed
self.rng = np.random.RandomState(seed)
else:
self.rng = np.random.RandomState(self.seed)
def reset(self):
raise NotImplementedError
def step(self):
raise NotImplementedError
class RefineEnv(BaseEnv):
# 注意这里完全重写了初始化函数
def __init__(
self,
seed: int,
build_path_base: str = "pybuild",
bit_width: int = 8,
pp_encode_type: str = "and",
init_ct_type: str = "wallace",
use_pp_wiring_optimize: bool = True,
pp_wiring_init_type: str = "default",
use_compressor_map_optimize: bool = False,
compressor_map_init_type: str = "default",
use_final_adder_optimize: bool = False,
final_adder_init_type: str = "default",
use_routing_optimize: bool = True,
target_delay: list = [50, 250, 400, 650],
opt_target_label: list = ["area", "delay", "power"],
opt_target_weight: list = [2, 1, 2],
normalize_reward_type: str = "scale",
opt_target_scale: list = None,
ppa_scale: float = 100,
initial_state_pool_max_len: int = 0,
reward_scale: float = 100,
long_term_reward_scale: float = 1.0,
reset_state_policy: str = "random",
random_reset_steps: int = 201,
store_state_type="less",
alpha: float = 1,
is_debug: bool = False,
reward_type: str = "simulate",
MAX_STAGE_NUM: int = 4,
n_processing: int = 4,
task_index: int = 0,
top_name="MUL",
evaluate_target=[],
**env_kwargs,
):
"""
强化学习环境
Parameters:
seed: 随机数种子
build_path_base: 综合仿真的工作路径
bit_width: 乘法器输入宽度
pp_encode_type: 部分积编码方式
init_ct_type: 初始压缩树结构
use_pp_wiring_optimize: 弃用功能
pp_wiring_init_type: 初始化 pp routing方式
"default": 默认连线 "random": 随机连线
use_compressor_map_optimize: 是否优化压缩器种类
compressor_map_init_type: 初始化压缩器种类方法
use_final_adder_optimize: 是否优化最终的CPA
final_adder_init_type: 使用何种 CPA
use_routing_optimize: 是否使用布线优化
target_delay: 就是target delay
opt_target_label: 优化目标的标签列表
opt_target_weight: 优化目标的权重
opt_target_scale: 优化指标的scale相关的参数
normalize_reward_type: normalize 方式, "scale" or "normal"
"""
self.set_seed(seed)
self.bit_width = bit_width
self.pp_encode_type = pp_encode_type
self.init_ct_type = init_ct_type
self.use_pp_wiring_optimize = use_pp_wiring_optimize
self.pp_wiring_init_type = pp_wiring_init_type
self.use_compressor_map_optimize = use_compressor_map_optimize
self.action_type_num = 4
if use_compressor_map_optimize:
self.action_type_num += len(legal_FA_list) + len(legal_HA_list)
self.compressor_map_init_type = compressor_map_init_type
self.use_final_adder_optimize = use_final_adder_optimize
self.final_adder_init_type = final_adder_init_type
self.target_delay = target_delay
self.opt_target_label = opt_target_label
self.opt_target_weight = opt_target_weight
assert len(opt_target_label) == len(opt_target_weight)
self.normalize_reward_type = normalize_reward_type
self.ppa_scale = ppa_scale
self.reward_scale = reward_scale
self.long_term_reward_scale = long_term_reward_scale
self.reset_state_policy = reset_state_policy
self.random_reset_steps = random_reset_steps
self.store_state_type = store_state_type
self.alpha = alpha
self.is_debug = is_debug
self.reward_type = reward_type
self.MAX_STAGE_NUM = MAX_STAGE_NUM
self.top_name = top_name
self.use_routing_optimize = use_routing_optimize
self.evaluate_target = evaluate_target
if use_routing_optimize is True:
self.evaluate_target += ["ppa", "activity", "power"]
else:
self.evaluate_target += ["ppa", "power"]
if self.use_final_adder_optimize:
self.evaluate_target.append("prefix_adder")
self.evaluate_target.append("prefix_adder_power")
if top_name != "MUL":
self.evaluate_target=["ppa"]
self.n_processing = n_processing
assert n_processing >= 0
self.build_path_base = build_path_base
# 初始化当前状态信息
if not os.path.exists(self.build_path_base):
os.makedirs(self.build_path_base)
self.eval_build_path = os.path.join(
build_path_base, f"{bit_width}bits_{pp_encode_type}_{task_index}"
)
self.rtl_path = os.path.join(self.eval_build_path, "MUL.v")
# 需要维护的当前状态
self.cur_state: State = None
self.initial_evaluate_worker_no_routing: EvaluateWorker = None
self.cur_evaluate_worker: EvaluateWorker = None
self.opt_target_scale = opt_target_scale
self.__reset()
self.initial_state_pool_max_len = initial_state_pool_max_len
self.initial_state = copy.deepcopy(self.cur_state)
self.initial_evaluate_worker = copy.deepcopy(self.cur_evaluate_worker)
if initial_state_pool_max_len > 0:
self.initial_state_pool = deque([], maxlen=initial_state_pool_max_len)
self.initial_state_pool.append(
{
"state": copy.deepcopy(self.cur_state),
"evaluate_worker": copy.deepcopy(self.cur_evaluate_worker),
"count": 1,
}
)
else:
self.initial_state_pool = None
def __reset(self):
"""
name mangling 的 __reset
仅限于 RefineEnv 的 __init__ 中调用
确保被继承后不会被覆盖掉
"""
# fmt: off
self.cur_state = State(
self.bit_width,
self.pp_encode_type,
self.MAX_STAGE_NUM,
self.use_pp_wiring_optimize,
self.pp_wiring_init_type,
self.use_compressor_map_optimize,
self.compressor_map_init_type,
self.use_final_adder_optimize,
self.final_adder_init_type,
top_name=self.top_name,
)
self.cur_state.init(self.init_ct_type)
# 仿真初始状态 并且把初始状态的 ppa 作为 scale
eval_build_path = os.path.join(self.build_path_base, f"reset_{self.init_ct_type}")
rtl_path = os.path.join(eval_build_path, "MUL.v")
self.cur_state.emit_verilog(rtl_path)
self.cur_evaluate_worker = EvaluateWorker(
rtl_path,
self.evaluate_target,
self.target_delay,
eval_build_path,
False, False, False, False,
n_processing=self.n_processing,
top_name=self.top_name,
)
self.cur_evaluate_worker.evaluate()
if "power" in self.evaluate_target:
self.cur_state.update_power_mask(self.cur_evaluate_worker)
self.initial_evaluate_worker_no_routing = copy.deepcopy(self.cur_evaluate_worker)
if self.use_routing_optimize:
self.cur_state.pp_wiring_arrangement_v0(None, None, None, None, self.cur_evaluate_worker)
self.cur_state.emit_verilog(rtl_path)
self.cur_evaluate_worker.evaluate()
self.cur_state.update_power_mask(self.cur_evaluate_worker)
ppa_dict = self.cur_evaluate_worker.consult_ppa()
if (self.opt_target_scale is None or self.opt_target_scale == "None") and self.normalize_reward_type == "scale":
self.opt_target_scale = []
for ppa_key in self.opt_target_label:
self.opt_target_scale.append(ppa_dict[ppa_key])
else:
pass # 什么都不需要做
# fmt: off
def select_state_from_pool(self, state_novelty, state_value):
if state_novelty is None and state_value is None:
sel_index = np.random.randint(len(self.initial_state_pool))
initial_state = self.initial_state_pool[sel_index]["state"]
else:
if self.reset_state_policy == "random":
sel_index = np.random.randint(len(self.initial_state_pool))
initial_state = self.initial_state_pool[sel_index]["state"]
else:
""" TODO """
raise NotImplementedError
return initial_state, sel_index
# fmt: on
# fmt: off
def reset(self, state_novelty=None, state_value=None):
if self.initial_state_pool_max_len > 0:
initial_state, sel_index = self.select_state_from_pool(state_novelty, state_value)
self.cur_state = copy.deepcopy(self.initial_state_pool[sel_index]["state"])
self.cur_evaluate_worker = copy.deepcopy(self.initial_state_pool[sel_index]["evaluate_worker"])
else:
sel_index = 0
initial_state = copy.deepcopy(self.initial_state)
self.cur_state = copy.deepcopy(self.initial_state)
self.cur_evaluate_worker = copy.deepcopy(self.initial_evaluate_worker)
return initial_state, sel_index
# fmt: on
def normalize_target(self, target_index, target_value, global_step=None, my_logger=None):
if global_step != None:
logger.tb_logger.add_scalar(
'opt_target_scale_{}'.format(self.opt_target_label[target_index]), self.opt_target_scale[target_index], global_step=global_step)
if my_logger != None:
my_logger.info('opt_target_scale_{}: {}'.format(self.opt_target_label[target_index], self.opt_target_scale[target_index]))
if self.normalize_reward_type == "scale":
return target_value / self.opt_target_scale[target_index]
elif self.normalize_reward_type == "normal":
return (
target_value - self.opt_target_scale[target_index][0]
) / self.opt_target_scale[target_index][1]
else:
raise NotImplementedError
# fmt: off
def get_ppa(self, ppa_dict, global_step=None, logger=None):
ppa = 0.0
for ppa_key_index, ppa_key in enumerate(self.opt_target_label):
normalized_value = self.normalize_target(ppa_key_index, ppa_dict[ppa_key], global_step, logger)
ppa += self.opt_target_weight[ppa_key_index] * normalized_value
logging.debug(f"env.get_ppa: {ppa_key}, value={ppa_dict[ppa_key]}, scale={self.opt_target_scale[ppa_key_index]}, normalized={normalized_value}, weight={self.opt_target_weight[ppa_key_index]}")
ppa *= self.ppa_scale
return ppa
# fmt: on
# fmt: off
def process_reward(self, next_evaluate_worker: EvaluateWorker):
"""
从仿真信息中获得奖励
Parameters:
next_evaluate_worker: 仿真器 里面需要包含仿真信息
"""
avg_ppa_dict = next_evaluate_worker.consult_ppa()
ppa = self.get_ppa(avg_ppa_dict)
last_avg_ppa_dict = self.cur_evaluate_worker.consult_ppa()
last_ppa = self.get_ppa(last_avg_ppa_dict)
initial_avg_ppa_dict = self.initial_evaluate_worker.consult_ppa()
initial_ppa = self.get_ppa(initial_avg_ppa_dict)
long_term_reward = initial_ppa - ppa
reward = last_ppa - ppa
reward += self.long_term_reward_scale * long_term_reward
reward_dict = {
"reward": reward,
"avg_ppa_dict": avg_ppa_dict,
"avg_ppa": ppa,
}
return reward, reward_dict
# fmt: on
# fmt: off
def step(self, action_index: int):
action_column = int(action_index) // self.action_type_num
action_type = int(action_index) % self.action_type_num
next_state = copy.deepcopy(self.cur_state)
next_state.transition(action_column, action_type)
next_state.get_initial_pp_wiring()
next_state.emit_verilog(self.rtl_path)
next_evaluate_worker = EvaluateWorker(
self.rtl_path,
self.evaluate_target,
self.target_delay,
self.eval_build_path,
n_processing=self.n_processing,
top_name=self.top_name,
)
next_evaluate_worker.evaluate()
next_state.update_power_mask(next_evaluate_worker)
if self.use_routing_optimize:
# 使用部分积布线优化!
next_evaluate_worker_no_routing = copy.deepcopy(next_evaluate_worker) # 首先保存一下优化前的结果
next_state.pp_wiring_arrangement_v0(None, None, None, None, next_evaluate_worker)
next_state.emit_verilog(self.rtl_path)
next_evaluate_worker.evaluate()
next_state.update_power_mask(next_evaluate_worker)
reward, reward_dict = self.process_reward(next_evaluate_worker)
# 改变当前状态
self.cur_state = copy.deepcopy(next_state)
self.cur_evaluate_worker = copy.deepcopy(next_evaluate_worker)
step_info_dict = {
"next_state": next_state,
"reward": reward,
"reward_dict": reward_dict,
"evaluate_worker": next_evaluate_worker,
}
if self.use_routing_optimize:
step_info_dict["evaluate_worker_no_routing"] = next_evaluate_worker_no_routing
return step_info_dict
# fmt: on
def mask_with_legality(self):
"""
test only
"""
return self.cur_state.mask_with_legality()
def mask(self):
"""
test only
"""
return self.cur_state.mask()
def get_mutual_distance(self):
number_states = len(self.initial_state_pool)
mutual_distances = np.zeros((number_states, number_states))
for i in range(number_states):
state_i: State = self.initial_state_pool[i]["state"]
for j in range(number_states):
state_j: State = self.initial_state_pool[j]["state"]
if self.top_name == "MUL":
mutual_dis = np.linalg.norm(state_i.ct - state_j.ct, ord=2)
else:
mutual_dis = np.linalg.norm(state_i.cell_map - state_j.cell_map, ord=2)
mutual_distances[i, j] = mutual_dis
mutual_distances = np.around(mutual_distances, decimals=2)
return mutual_distances
def get_ppa_full_delay_cons(self, state: State, n_processing=None):
target_delay = []
if self.bit_width == 8:
for i in range(50, 1000, 10):
target_delay.append(i)
elif self.bit_width == 16:
for i in range(50, 2000, 10):
target_delay.append(i)
elif self.bit_width == 32:
for i in range(50, 3000, 10):
target_delay.append(i)
elif self.bit_width == 64:
for i in range(50, 4000, 10):
target_delay.append(i)
else:
for i in range(50, 1000, 10):
target_delay.append(i)
if n_processing is None:
n_processing = self.n_processing
eval_build_path = os.path.join(
self.build_path_base, f"full_ppa_{self.init_ct_type}"
)
rtl_path = os.path.join(eval_build_path, "MUL.v")
evaluate_worker = EvaluateWorker(
rtl_path,
["ppa"],
target_delay,
eval_build_path,
n_processing=n_processing,
top_name=self.top_name,
)
state.emit_verilog(rtl_path)
evaluate_worker.evaluate()
return evaluate_worker.consult_ppa_list()
def verilate(self):
raise NotImplementedError
def get_pp_len(self) -> int:
if self.pp_encode_type == "and":
return 2 * self.bit_width - 1
elif self.pp_encode_type == "booth":
return 2 * self.bit_width
else:
raise NotImplementedError
class RefineEnvMultiAgent(RefineEnv):
# fmt: off
def step(self, action_ct: int = None, action_pt: int = None, action: int = None):
"""
Parameters:
action_ct: 压缩树动作
action_pt: 前缀树动作
action: 总动作,优先使用
action = action_pt + action_ct * (2 * pp_len ** 2)
action_pt = action % (2 * pp_len ** 2)
action_ct = action // (2 * pp_len ** 2)
"""
next_state = copy.deepcopy(self.cur_state)
if action is not None:
offset = 2 * next_state.get_pp_len() ** 2
action_pt = action % offset
action_ct = action // offset
if action_ct is not None:
action_column = int(action_ct) // self.action_type_num
action_type = int(action_ct) % self.action_type_num
next_state.transition(action_column, action_type)
if action_pt is not None:
next_state.transition_cell_map(action_pt)
if self.top_name == "MUL":
next_state.get_initial_pp_wiring()
next_state.emit_verilog(self.rtl_path)
next_evaluate_worker = EvaluateWorker(
self.rtl_path,
self.evaluate_target,
self.target_delay,
self.eval_build_path,
n_processing=self.n_processing,
top_name=self.top_name,
)
next_evaluate_worker.evaluate()
if self.top_name == "MUL":
next_state.update_power_mask(next_evaluate_worker)
next_state.update_power_mask_cell_map(next_evaluate_worker)
if self.use_routing_optimize:
# 使用部分积布线优化!
next_evaluate_worker_no_routing = copy.deepcopy(next_evaluate_worker) # 首先保存一下优化前的结果
next_state.pp_wiring_arrangement_v0(None, None, None, None, next_evaluate_worker)
next_state.emit_verilog(self.rtl_path)
next_evaluate_worker.evaluate()
next_state.update_power_mask(next_evaluate_worker)
reward, reward_dict = self.process_reward(next_evaluate_worker)
# 改变当前状态
self.cur_state = copy.deepcopy(next_state)
self.cur_evaluate_worker = copy.deepcopy(next_evaluate_worker)
step_info_dict = {
"next_state": next_state,
"reward": reward,
"reward_dict": reward_dict,
"evaluate_worker": next_evaluate_worker,
}
if self.use_routing_optimize:
step_info_dict["evaluate_worker_no_routing"] = next_evaluate_worker_no_routing
return step_info_dict
# fmt: on
def test_env_step():
logging.basicConfig(
level=logging.CRITICAL,
format="%(asctime)s - %(levelname)s - %(module)s - %(funcName)s - Line:%(lineno)d - %(message)s",
)
env = RefineEnv(
0,
bit_width=16,
MAX_STAGE_NUM=7,
build_path_base="pybuild/env_debug",
n_processing=4,
pp_encode_type="and",
init_ct_type="dadda",
normalize_reward_type="normal",
opt_target_scale=[
[2046.93375, 81.45554568866075],
[2.45930775, 0.1302654988233166],
[0.0088753, 0.001296428352243193],
],
)
with open("debuglog/log-booth", "w") as file:
pass
for step_index in range(100):
mask = env.mask_with_legality()
indices = np.where(mask)[0]
action = np.random.choice(indices)
with open("debuglog/log-booth", "a") as file:
file.write(f"\n========= step {step_index} =============\n")
file.write(
f"action = {action}, column = {action // 4}, type = {action % 4}\n"
)
file.write(f"state before = \n{env.cur_state.ct} \n")
_, reward, __ = env.step(action)
with open("debuglog/log-booth", "a") as file:
file.write(f"state before = \n{env.cur_state.ct} \n")
file.write(
f"reward = {__}, ppa = {env.get_ppa(env.cur_evaluate_worker.consult_ppa())} \n"
)
print(f"## step {step_index}, action = {action}, reward = {reward}")
pass
def debug_env_step():
env = RefineEnv(
0,
bit_width=16,
MAX_STAGE_NUM=7,
build_path_base="pybuild/env_debug",
n_processing=4,
init_ct_type="dadda",
)
env.cur_state.ct = np.asarray(
[
[
0,
0,
0,
2,
2,
4,
4,
5,
7,
8,
9,
9,
10,
12,
12,
13,
13,
13.0,
12,
11,
10,
9,
8,
7,
6,
5,
4,
3,
2,
1,
0.0,
],
[
0,
0,
1,
0,
2,
0,
2,
3,
1,
1,
1,
2,
2,
0,
1,
1,
1,
0.0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0.0,
],
]
)
env.cur_state.get_initial_compressor_map()
env.cur_state.get_initial_pp_wiring()
mask = env.mask_with_legality()
env.step(44)
if __name__ == "__main__":
test_env_step()