-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patho0_adder_utils.py
executable file
·974 lines (800 loc) · 29.3 KB
/
o0_adder_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
import copy
import numpy as np
import matplotlib.pyplot as plt
import torch
import json
def cell_map_legalize(cell_map):
input_bit = len(cell_map)
for x in range(input_bit):
cell_map[x, x] = 1
cell_map[x, 0] = 1
for x in range(input_bit - 1, 0, -1):
last_y = x
for y in range(x - 1, -1, -1):
if cell_map[x, y] == 1:
cell_map[last_y - 1, y] = 1
last_y = y
return cell_map
def get_default_init(input_bit):
cell_map = np.zeros((input_bit, input_bit))
for i in range(input_bit):
cell_map[i, i] = 1
cell_map[i, 0] = 1
return np.array(cell_map)
def get_brent_kung_init(input_bit):
cell_map = np.zeros((input_bit, input_bit))
for i in range(input_bit):
cell_map[i, i] = 1
cell_map[i, 0] = 1
t = 2
while t < input_bit:
for i in range(t - 1, input_bit, t):
cell_map[i, i - t + 1] = 1
t *= 2
return np.array(cell_map)
def get_sklansky_init(input_bit):
cell_map = np.zeros((input_bit, input_bit))
for i in range(input_bit):
cell_map[i, i] = 1
t = i
now = i
x = 1
level = 1
while t > 0:
if t % 2 == 1:
last_now = now
now -= x
cell_map[i, now] = 1
level += 1
t = t // 2
x *= 2
cell_map = cell_map_legalize(cell_map)
return np.array(cell_map)
def get_kogge_stone_init(input_bit):
"""
生成 Kogge-Stone 加法器的进位树结构
"""
cell_map = np.zeros((input_bit, input_bit))
for i in range(input_bit):
cell_map[i, i] = 1 # 自带输入
cell_map[i, 0] = 1 # 自带输入
j = 1
while j < i:
j *= 2
cell_map[i, i - (j - 1)] = 1
cell_map = cell_map_legalize(cell_map)
return np.array(cell_map)
# GPT 生成的 正确性存疑
def get_han_carlson_init(input_bit):
"""
生成 Han-Carlson 加法器的进位树结构
"""
cell_map = np.zeros((input_bit, input_bit))
for i in range(input_bit):
cell_map[i, i] = 1 # 自带输入
cell_map[i, 0] = 1 # 自带输入
t = 1
while t < input_bit:
for i in range(t, input_bit, t * 2):
cell_map[i, i - t] = 1 # 长跳跃连接
t *= 2
t = 2
while t < input_bit:
for i in range(t - 1, input_bit, t * 2):
cell_map[i, i - t + 1] = 1 # 短跳跃连接
t *= 2
cell_map = cell_map_legalize(cell_map)
return np.array(cell_map)
def get_init_cell_map(input_bit: int, init_type: str):
if init_type == "default":
return get_default_init(input_bit)
elif init_type == "brent_kung":
return get_brent_kung_init(input_bit)
elif init_type == "sklansky":
return get_sklansky_init(input_bit)
elif init_type == "kogge_stone":
return get_kogge_stone_init(input_bit)
elif init_type == "han_carlson":
return get_han_carlson_init(input_bit)
else:
raise NotImplementedError
BLACK_CELL = """module BLACK(gik, pik, gkj, pkj, gij, pij);
input gik, pik, gkj, pkj;
output gij, pij;
assign pij = pik & pkj;
assign gij = gik | (pik & gkj);
endmodule
"""
GREY_CELL = """module GREY(gik, pik, gkj, gij);
input gik, pik, gkj;
output gij;
assign gij = gik | (pik & gkj);
endmodule
"""
# 改进后的 cell
BLACK_CELL_00 = """module BLACK_CELL_00(pik, pkj, pij);
input pik, pkj;
output pij;
assign pij = pik & pkj;
endmodule
"""
BLACK_CELL_01 = """module BLACK_CELL_01(pik, pkj, gkj, gij, pij);
input pik, pkj, gkj;
output gij, pij;
assign pij = pik & pkj;
assign gij = pik & gkj;
endmodule
"""
BLACK_CELL_10 = """module BLACK_CELL_10(gik, pik, pkj, gij, pij);
input gik, pik, pkj;
output gij;
output pij;
assign gij = gik;
assign pij = pik & pkj;
endmodule
"""
BLACK_CELL_11 = """module BLACK_CELL_11(gik, pik, gkj, pkj, gij, pij);
input gik, pik, gkj, pkj;
output gij, pij;
assign pij = pik & pkj;
assign gij = gik | (pik & gkj);
endmodule
"""
# grey cell 只会输出 gi0, 不输出 p
# 因为 s[i] = gi0 ^ pii
GREY_CELL_11 = """module GREY_CELL_11(gik, pik, gkj, gij);
input gik, pik, gkj;
output gij;
assign gij = gik | (pik & gkj);
endmodule
"""
GREY_CELL_00 = """module GREY_CELL_00(gij);
output gij;
assign gij = 0;
endmodule
"""
GREY_CELL_01 = """module GREY_CELL_01(pik, gkj, gij);
input pik, gkj;
output gij;
assign gij = pik & gkj;
endmodule
"""
GREY_CELL_10 = """module GREY_CELL_10(gik, gij);
input gik;
output gij;
assign gij = gik;
endmodule
"""
def adder_output_verilog_top(cell_map: np.ndarray) -> str:
input_bit = len(cell_map)
content = ""
content += f"module PrefixAdder(a,b,s,cout);\n"
content += f"\tinput [{input_bit - 1}:0] a,b;\n"
content += f"\toutput [{input_bit - 1}:0] s;\n"
content += "\toutput cout;\n"
wires = set()
for i in range(input_bit):
wires.add(f"c{i}")
for x in range(input_bit - 1, 0, -1):
last_y = x
for y in range(x - 1, -1, -1):
if cell_map[x, y] == 1:
assert cell_map[last_y - 1, y] == 1
if y == 0:
wires.add(f"g{x}_{last_y}")
wires.add(f"p{x}_{last_y}")
wires.add(f"g{last_y - 1}_{y}")
else:
wires.add(f"g{x}_{last_y}")
wires.add(f"p{x}_{last_y}")
wires.add(f"g{last_y - 1}_{y}")
wires.add(f"p{last_y - 1}_{y}")
wires.add(f"g{x}_{y}")
wires.add(f"p{x}_{y}")
last_y = y
for i in range(input_bit):
wires.add(f"p{i}_{i}")
wires.add(f"g{i}_{i}")
wires.add(f"g{i}_{0}")
wires.add(f"c{x}")
assert 0 not in wires
assert "0" not in wires
content += "\twire "
for i, wire in enumerate(wires):
if i < len(wires) - 1:
content += f"{wire},"
else:
content += f"{wire};\n"
content += "\n"
for i in range(input_bit):
content += f"\tassign p{i}_{i} = a[{i}] ^ b[{i}];\n"
content += f"\tassign g{i}_{i} = a[{i}] & b[{i}];\n"
for i in range(1, input_bit):
content += f"\tassign g{i}_0 = c{i};\n"
for x in range(input_bit - 1, 0, -1):
last_y = x
for y in range(x - 1, -1, -1):
if cell_map[x, y] == 1:
assert cell_map[last_y - 1, y] == 1
if y == 0: # add grey module
content += f"\tGREY cell_{x}_{y}_grey(g{x}_{last_y}, p{x}_{last_y}, g{last_y - 1}_{y}, c{x});\n"
else:
content += f"\tBLACK cell_{x}_{y}_black(g{x}_{last_y}, p{x}_{last_y}, g{last_y - 1}_{y}, p{last_y - 1}_{y}, g{x}_{y}, p{x}_{y});\n"
last_y = y
content += "\tassign s[0] = a[0] ^ b[0];\n"
content += "\tassign c0 = g0_0;\n"
content += f"\tassign cout = c{input_bit - 1};\n"
for i in range(1, input_bit):
content += f"\tassign s[{i}] = p{i}_{i} ^ c{i - 1};\n"
content += "endmodule"
content += "\n\n"
return content
def adder_output_verilog_all(cell_map: np.ndarray, remain_pp: np.ndarray = None):
if remain_pp is None:
return BLACK_CELL + GREY_CELL + adder_output_verilog_top(cell_map)
else:
return (
BLACK_CELL + GREY_CELL + adder_output_verilog_from_ct(cell_map, remain_pp)
)
def adder_output_verilog_from_ct(cell_map: np.ndarray, final_pp: np.ndarray) -> str:
input_bit = len(cell_map)
content = ""
# module head
content += f"module PrefixAdder("
for column_index in range(len(final_pp)):
content += f"out{column_index}_C, "
content += f"s,cout,clock);\n"
# 声明
for column_index in range(len(final_pp)):
content += f"\t input[{final_pp[column_index] - 1}:0] out{column_index}_C;\n"
content += "\toutput cout;\n"
content += "\tinput clock;\n"
content += f"\toutput[{len(final_pp) - 1}:0] s;\n\n"
content += f"\twire[{len(final_pp) - 1}:0] a;\n"
content += f"\twire[{len(final_pp) - 1}:0] b;\n"
for column_index in range(len(final_pp)):
content += f"\t assign a[{len(final_pp)- 1 - column_index}] = out{column_index}_C[0];\n"
if final_pp[column_index] == 1:
content += f"\t assign b[{len(final_pp)- 1 - column_index}] = 1'b0;\n"
else:
content += f"\t assign b[{len(final_pp)- 1 - column_index}] = out{column_index}_C[1];\n"
wires = set()
for i in range(input_bit):
wires.add(f"c{i}")
for x in range(input_bit - 1, 0, -1):
last_y = x
for y in range(x - 1, -1, -1):
if cell_map[x, y] == 1:
assert cell_map[last_y - 1, y] == 1
if y == 0:
wires.add(f"g{x}_{last_y}")
wires.add(f"p{x}_{last_y}")
wires.add(f"g{last_y - 1}_{y}")
else:
wires.add(f"g{x}_{last_y}")
wires.add(f"p{x}_{last_y}")
wires.add(f"g{last_y - 1}_{y}")
wires.add(f"p{last_y - 1}_{y}")
wires.add(f"g{x}_{y}")
wires.add(f"p{x}_{y}")
last_y = y
for i in range(input_bit):
wires.add(f"p{i}_{i}")
wires.add(f"g{i}_{i}")
wires.add(f"g{i}_{0}")
wires.add(f"c{x}")
assert 0 not in wires
assert "0" not in wires
content += "\twire "
for i, wire in enumerate(wires):
if i < len(wires) - 1:
content += f"{wire},"
else:
content += f"{wire};\n"
content += "\n"
for i in range(input_bit):
content += f"\tassign p{i}_{i} = a[{i}] ^ b[{i}];\n"
content += f"\tassign g{i}_{i} = a[{i}] & b[{i}];\n"
for i in range(1, input_bit):
content += f"\tassign g{i}_0 = c{i};\n"
for x in range(input_bit - 1, 0, -1):
last_y = x
for y in range(x - 1, -1, -1):
if cell_map[x, y] == 1:
assert cell_map[last_y - 1, y] == 1
if y == 0: # add grey module
content += f"\tGREY cell_{x}_{y}_grey(g{x}_{last_y}, p{x}_{last_y}, g{last_y - 1}_{y}, c{x});\n"
else:
content += f"\tBLACK cell_{x}_{y}_black(g{x}_{last_y}, p{x}_{last_y}, g{last_y - 1}_{y}, p{last_y - 1}_{y}, g{x}_{y}, p{x}_{y});\n"
last_y = y
content += "\tassign s[0] = a[0] ^ b[0];\n"
content += "\tassign c0 = g0_0;\n"
content += f"\tassign cout = c{input_bit - 1};\n"
for i in range(1, input_bit):
content += f"\tassign s[{i}] = p{i}_{i} ^ c{i - 1};\n"
content += "endmodule"
content += "\n\n"
return content
def get_cell_type_map(cell_map: np.ndarray, final_pp: np.ndarray) -> list:
"""
根据输入的不同 有四种cell
b1 \
cell -- bo
b2 /
(b1 b2) = 00, 01, 10, 11
00 的输出是 0
其余的输出都是 1
b 是针对组进位产生信号 g 而言的
0 代表没有 g, 1代表 ...
##################################
就输入而言, cell (ii) 其实是不存在的
那怎么确定呢第一批 cell 的颜色呢
单独考虑. 如果有父节点中是 cell (ii) 的, 就考察 final_pp
##################################
因此引入两个概念
cell_type_map: 这个 cell 的类型是什么 00 or 01, or ...
cell_out_map: 这个 cell 的输出类型是什么, 0 or 1
##################################
从功能上看 每个cell 的功能是
ik \
cell -- ij
kj /
x --> i y --> j k --> last_y - 1
整棵树的输出是 i0
整棵树的输入是 ii
所以对于 cell[x, y], 左父节点 cell[x, last_y], 右父节点 cell[last_y - 1, y]
"""
input_bit = len(cell_map)
cell_type_map = np.full_like(cell_map, "", dtype=str).tolist()
cell_out_map = np.full_like(cell_map, 0, dtype=int)
for i in range(len(final_pp)):
cell_out_map[len(final_pp) - 1 - i, len(final_pp) - 1 - i] = final_pp[i] - 1
for x in range(input_bit):
last_y = x
for y in range(x - 1, -1, -1):
if cell_map[x, y] == 1:
assert cell_map[last_y - 1, y] == 1
# 输入
if cell_out_map[x, last_y] == 0 and cell_out_map[last_y - 1, y] == 0:
# 00 -> 0
cell_out_map[x, y] = 0
else:
cell_out_map[x, y] = 1
cell_type_map[x][
y
] = f"{cell_out_map[x, last_y]}{cell_out_map[last_y - 1, y]}"
last_y = y
return cell_type_map
def adder_output_verilog_from_ct_v1(cell_map: np.ndarray, final_pp: np.ndarray) -> str:
input_bit = len(cell_map)
content = BLACK_CELL_00 + BLACK_CELL_01 + BLACK_CELL_10 + BLACK_CELL_11 + "\n"
content += GREY_CELL_00 + GREY_CELL_01 + GREY_CELL_10 + GREY_CELL_11 + "\n"
cell_type_map = get_cell_type_map(cell_map, final_pp)
# module head
content += f"module PrefixAdder("
for column_index in range(len(final_pp)):
content += f"out{column_index}_C, "
content += f"s,cout, clock);\n"
# 声明
for column_index in range(len(final_pp)):
content += f"\t input[{final_pp[column_index] - 1}:0] out{column_index}_C;\n"
content += "\tinput clock;\n"
content += "\toutput cout;\n"
content += f"\toutput[{len(final_pp) - 1}:0] s;\n\n"
# 创建 wire
content += f"\twire[{len(final_pp) - 1}:0] a;\n"
content += f"\twire[{len(final_pp) - 1}:0] b;\n"
for column_index in range(len(final_pp)):
content += f"\t assign a[{len(final_pp)- 1 - column_index}] = out{column_index}_C[0];\n"
if final_pp[column_index] == 1:
content += f"\t assign b[{len(final_pp)- 1 - column_index}] = 1'b0;\n"
else:
content += f"\t assign b[{len(final_pp)- 1 - column_index}] = out{column_index}_C[1];\n"
wires = set()
for i in range(input_bit):
wires.add(f"c{i}")
for x in range(input_bit - 1, 0, -1):
last_y = x
for y in range(x - 1, -1, -1):
if cell_map[x, y] == 1:
assert cell_map[last_y - 1, y] == 1
if y == 0:
# GREY CELL
if cell_type_map[x][y] == "11":
wires.add(f"g{x}_{last_y}")
wires.add(f"p{x}_{last_y}")
wires.add(f"g{last_y - 1}_{y}")
elif cell_type_map[x][y] == "00":
pass
elif cell_type_map[x][y] == "01":
wires.add(f"p{x}_{last_y}")
wires.add(f"g{last_y - 1}_{y}")
elif cell_type_map[x][y] == "10":
wires.add(f"g{x}_{last_y}")
wires.add(f"p{x}_{last_y}")
else:
raise NotImplementedError
else:
if cell_type_map[x][y] == "11":
wires.add(f"g{x}_{last_y}")
wires.add(f"p{x}_{last_y}")
wires.add(f"g{last_y - 1}_{y}")
wires.add(f"p{last_y - 1}_{y}")
wires.add(f"g{x}_{y}")
wires.add(f"p{x}_{y}")
elif cell_type_map[x][y] == "00":
wires.add(f"p{x}_{last_y}")
wires.add(f"p{last_y - 1}_{y}")
wires.add(f"p{x}_{y}")
elif cell_type_map[x][y] == "01":
wires.add(f"p{x}_{last_y}")
wires.add(f"p{last_y - 1}_{y}")
wires.add(f"g{last_y - 1}_{y}")
wires.add(f"g{x}_{y}")
wires.add(f"p{x}_{y}")
elif cell_type_map[x][y] == "10":
wires.add(f"g{x}_{last_y}")
wires.add(f"p{last_y - 1}_{y}")
wires.add(f"g{x}_{y}")
wires.add(f"p{x}_{y}")
last_y = y
for i in range(input_bit):
wires.add(f"p{i}_{i}")
wires.add(f"g{i}_{i}")
wires.add(f"g{i}_{0}")
wires.add(f"c{x}")
assert 0 not in wires
assert "0" not in wires
content += "\twire "
for i, wire in enumerate(wires):
if i < len(wires) - 1:
content += f"{wire},"
else:
content += f"{wire};\n"
content += "\n"
for i in range(input_bit):
content += f"\tassign p{i}_{i} = a[{i}] ^ b[{i}];\n"
content += f"\tassign g{i}_{i} = a[{i}] & b[{i}];\n"
for i in range(1, input_bit):
content += f"\tassign c{i} = g{i}_0;\n"
for x in range(input_bit - 1, 0, -1):
last_y = x
for y in range(x - 1, -1, -1):
if cell_map[x, y] == 1:
assert cell_map[last_y - 1, y] == 1
gij = f"g{x}_{y}"
pij = f"p{x}_{y}"
gik = f"g{x}_{last_y}"
pik = f"p{x}_{last_y}"
gkj = f"g{last_y - 1}_{y}"
pkj = f"p{last_y - 1}_{y}"
if y == 0:
# GREY CELL
if cell_type_map[x][y] == "11":
content += f"\tGREY_CELL_11 cell_{x}_{y}_grey({gik}, {pik}, {gkj}, {gij});\n"
elif cell_type_map[x][y] == "00":
content += f"\tGREY_CELL_00 cell_{x}_{y}_grey({gij});\n"
elif cell_type_map[x][y] == "01":
content += (
f"\tGREY_CELL_01 cell_{x}_{y}_grey({pik}, {gkj}, {gij});\n"
)
else:
content += f"\tGREY_CELL_10 cell_{x}_{y}_grey({gik}, {gij});\n"
else:
# BLACK CELL
if cell_type_map[x][y] == "11":
content += f"\tBLACK_CELL_11 cell_{x}_{y}_black({gik}, {pik}, {gkj}, {pkj}, {gij}, {pij});\n"
elif cell_type_map[x][y] == "00":
content += f"\tBLACK_CELL_00 cell_{x}_{y}_black({pik}, {pkj}, {pij});\n"
elif cell_type_map[x][y] == "01":
content += f"\tBLACK_CELL_01 cell_{x}_{y}_black({pik}, {pkj}, {gkj}, {gij}, {pij});\n"
else:
content += f"\tBLACK_CELL_10 cell_{x}_{y}_black({gik}, {pik}, {pkj}, {gij}, {pij});\n"
last_y = y
content += "\tassign s[0] = a[0] ^ b[0];\n"
content += "\tassign c0 = g0_0;\n"
content += f"\tassign cout = c{input_bit - 1};\n"
for i in range(1, input_bit):
content += f"\tassign s[{i}] = p{i}_{i} ^ c{i - 1};\n"
content += "endmodule"
content += "\n\n"
return content
def get_mask_map(cell_map: np.ndarray) -> np.ndarray:
bit_width = len(cell_map)
mask_map = np.full((2, bit_width, bit_width), False)
for i in range(bit_width):
for j in range(1, i):
if cell_map[i, j] == 1:
mask_map[0, i, j] = 0
mask_map[1, i, j] = 1
else:
mask_map[0, i, j] = 1
mask_map[1, i, j] = 0
return mask_map
def get_level_map(cell_map: np.ndarray) -> np.ndarray:
level_map = np.full_like(cell_map, -1)
bit_width = len(cell_map)
split_map = {}
for x in range(bit_width - 1, 0, -1):
last_y = x
for y in range(x - 1, -1, -1):
if cell_map[x, y] == 1:
assert cell_map[last_y - 1, y] == 1
split_map[(x, y)] = last_y
last_y = y
def __get_level_value(x, y):
if x == y:
level_map[x, y] = 0
return 0
else:
last_y = split_map[(x, y)]
if level_map[x, y] >= 0:
return level_map[x, y]
else:
left_level = __get_level_value(x, last_y)
right_level = __get_level_value(last_y - 1, y)
level = max(left_level, right_level) + 1
level_map[x, y] = level
return level
for i in range(bit_width):
level = __get_level_value(i, 0)
level_map[i, 0] = level
return level_map
def get_fanout_map(cell_map: np.ndarray) -> dict:
bit_width = len(cell_map)
fanout_map = {}
for x in range(bit_width - 1, 0, -1):
last_y = x
for y in range(x - 1, -1, -1):
if cell_map[x, y] == 1:
assert cell_map[last_y - 1, y] == 1
if (x, last_y) in fanout_map.keys():
fanout_map[(x, last_y)].append((x, y))
else:
fanout_map[(x, last_y)] = [(x, y)]
if (last_y - 1, y) in fanout_map.keys():
fanout_map[(last_y - 1, y)].append((x, y))
else:
fanout_map[(last_y - 1, y)] = [(x, y)]
last_y = y
return fanout_map
def remove_tree_cell(cell_map: np.ndarray, target_x_list, target_y_list) -> np.ndarray:
fanout_map = get_fanout_map(cell_map)
new_cell_map = copy.deepcopy(cell_map)
def __remove_cell(x, y):
if x == y or y == 0:
return
else:
new_cell_map[x, y] = 0
if type(x) == torch.Tensor:
x = int(x.cpu().flatten()[0])
y = int(y.cpu().flatten()[0])
for fanout_x, fanout_y in fanout_map[(x, y)]:
__remove_cell(fanout_x, fanout_y)
for x, y in zip(target_x_list, target_y_list):
__remove_cell(x, y)
new_cell_map = cell_map_legalize(new_cell_map)
return new_cell_map
def draw_cell_map(cell_map: np.ndarray, power_mask: np.ndarray = None):
plt.figure(figsize=[16, 10])
bit_width = len(cell_map)
level_map = get_level_map(cell_map)
points = []
points_color = []
points_text = []
lines = []
max_level = np.max(level_map)
for i in range(bit_width):
last_j = i
for j in range(i, -1, -1):
if cell_map[i, j] == 1:
points.append([bit_width - i, max_level - level_map[i, j]])
points_text.append(f"({i}:{j})")
if j == 0:
points_color.append("orange")
else:
points_color.append("black")
if j != i:
p_1 = [bit_width - i, max_level - level_map[i, j]]
p_2 = [bit_width - i, max_level - level_map[i, last_j]]
p_3 = [
bit_width - (last_j - 1),
max_level - level_map[last_j - 1, j],
]
lines.append((p_1, p_2))
lines.append((p_1, p_3))
last_j = j
for line in lines:
x, y = np.transpose(line)
plt.plot(x, y, c="grey", alpha=0.5)
x, y = np.transpose(points)
if power_mask is None:
plt.scatter(x, y, c=points_color)
else:
mask_color = []
index = 0
for i in range(bit_width):
last_j = i
for j in range(i, -1, -1):
if cell_map[i, j] == 1:
mask_color.append(power_mask[i, j])
points_text[index] += f"\n{power_mask[i, j]:.2}"
last_j = j
index += 1
plt.scatter(x, y, c=mask_color, s=100)
i, j = np.unravel_index(np.argmax(power_mask), power_mask.shape)
x, y = bit_width - i, max_level - level_map[i, j]
plt.scatter(x, y, s=100, facecolors="none", edgecolors="red")
plt.colorbar()
for index, point in enumerate(points):
x, y = np.transpose(point)
plt.text(x, y - 0.5, points_text[index])
plt.tight_layout()
plt.show()
"""
UFO-MAC begin
"""
class FDC:
"""
di = k0 x F_black + k1 x F_blue + k2 x N_black + k3 x N_blue + b
"""
def __init__(self) -> None:
self.k_0 = None
self.k_1 = None
self.k_2 = None
self.k_3 = None
self.b = None
self.cell_map = None
self.fanout_map = None
self.arrival_time = None
def load_params(self, db_path):
with open(db_path, "r") as file:
data = json.load(file)
self.k_0 = data["k_0"]
self.k_1 = data["k_1"]
self.k_2 = data["k_2"]
self.k_3 = data["k_3"]
self.b = data["b"]
def fit(self):
pass
def gen_train_data(self, save_data_path:str="./db/dfc_data.json"):
for i in range(100):
# random
pass
def set_arrival_time(self, arrival_time):
self.arrival_time = arrival_time
def set_cell_map(self, cell_map: np.ndarray):
self.cell_map = copy.deepcopy(cell_map)
self.fanout_map = get_fanout_map(cell_map)
def __get_delay(self, x, y):
if y == 0:
return {
"N_black": 0,
"N_blue": 0,
"F_black": 0,
"F_blue": 0,
"delay": 0,
"path": [(x, y)],
}
fanouts = self.fanout_map[(x, y)]
fanout_list = []
for fanout_node in fanouts:
fanout_list.append(self.__get_delay(fanout_node[0], fanout_node[1]))
indices = list(range(len(fanout_list)))
max_delay_index = max(indices, key=lambda x: fanout_list[x]["delay"])
path = fanout_list[max_delay_index]["path"]
path.append((x, y))
N_black = fanout_list[max_delay_index]["N_black"]
N_blue = fanout_list[max_delay_index]["N_blue"]
F_black = fanout_list[max_delay_index]["F_black"]
F_blue = fanout_list[max_delay_index]["F_blue"]
# 跟新参数
if y == 0:
N_blue += 1
else:
N_black += 1
for fanout_node in fanouts:
if fanout_node[1] == 0:
F_blue += 1
else:
F_black += 1
# 更新完了 计算delay
delay = (
self.k_0 * F_black
+ self.k_1 * F_blue
+ self.k_2 * N_black
+ self.k_3 * N_blue
+ self.b
)
return {
"N_black": N_black,
"N_blue": N_blue,
"F_black": F_black,
"F_blue": F_blue,
"delay": delay,
"path": path,
}
def preidct(self, bit_position: int) -> float:
return self.__get_delay(bit_position, bit_position)["delay"]
def get_parent(cell_map: np.ndarray, x: int, y: int):
if y == x:
return None, None
last_y = y + 1
while cell_map[x, last_y] != 1:
last_y += 1
return (x, last_y), (last_y - 1, y)
def graph_opt(cell_map: np.ndarray, x_p: int, y_p: int) -> np.ndarray:
"""
Algorithm 2
procedure GraphOpt(p)
Create a new node s
nt f (s) ← t f (nt f (p)), nt f (s) ← t f (nt f (p))
t f (p) ← s, nt f (p) ← nt f (nt f (p))
end procedure
tf: 正上方那个
nt f : 斜上方那个
简单来说: 斜亲变兄弟
方法: 添加一个节点,首先是在自己这一列,成为自己的直亲
然后 split 是斜亲的直亲
"""
if x_p == y_p:
return
tf, ntf = get_parent(cell_map, x_p, y_p)
_, ntf_ntf = get_parent(cell_map, ntf[0], ntf[1])
if ntf_ntf is not None:
assert x_p >= ntf_ntf[0] + 1
cell_map[x_p, ntf_ntf[0] + 1] = 1
def get_subtree_mask(cell_map: np.ndarray, x: int, y: int):
assert x >= y
subtree_mask = cell_map
def get_subtree_depth(cell_map: np.ndarray, x: int, y: int):
pass
def get_subtree_max_depth_node(cell_map: np.ndarray, x: int, y: int):
# TODO
pass
def get_subtree_max_sibling_node(cell_map: np.ndarray, x: int, y: int):
# TODO
pass
def prefix_graph_optimization(
cell_map: np.ndarray, arrival_times, timing_constraints, fdc: FDC, max_iter
):
bit_width = len(arrival_times)
fdc.set_arrival_time(arrival_times)
depth_th = np.log2(bit_width)
for iteration_index in range(max_iter):
chage_flag = False
for cur_bit in range(bit_width, -1, -1):
fdc.set_cell_map()
cur_time = fdc.preidct(cur_bit)
if cur_time > timing_constraints[cur_bit]:
chage_flag = True
# violated 需要做优化
depth = get_subtree_depth(cell_map, cur_bit, cur_bit)
if depth > depth_th:
# 超过了 log2 N 需要深度优化
x_p, y_p = get_subtree_max_depth_node(cell_map, cur_bit, cur_bit)
else:
# 针对 fanout 优化
x_p, y_p = get_subtree_max_sibling_node(cell_map, cur_bit, cur_bit)
graph_opt(cell_map, x_p, y_p)
if not chage_flag:
# 没有新的更新了
break
"""
UFO-MAC end
"""
if __name__ == "__main__":
# cell_map = get_default_init(64)
cell_map = get_sklansky_init(64)
# cell_map = get_brent_kung_init(128)
# cell_map = get_han_carlson_init(64)
# cell_map = get_kogge_stone_init(64)
print(cell_map)
print(get_level_map(cell_map))
fanout_map = get_fanout_map(cell_map)
print(fanout_map[(31, 0)])
draw_cell_map(cell_map)
cell_map = remove_tree_cell(cell_map, [39], [32])
fanout_map = get_fanout_map(cell_map)
print(fanout_map[(31, 0)])
draw_cell_map(cell_map)