@@ -31,26 +31,26 @@ def _positive_valid_dim_list(tensor: torch.Tensor, length: int) -> set[tuple[int
3131 """
3232 Generate valid permutations using only positive dimension indices.
3333 This is required for Cadence/Xtensa kernels that don't support negative indexing.
34-
34+
3535 Args:
3636 tensor: Input tensor to generate permutations for
3737 length: Number of dimensions in the permutation (must equal tensor.dim())
38-
38+
3939 Returns:
4040 Set of valid permutation tuples containing only positive indices [0, rank-1]
4141 """
4242 if length > tensor .dim ():
4343 return set ()
44-
44+
4545 n = tensor .dim ()
4646 pool = list (range (n ))
47-
47+
4848 # Generate multiple valid permutations (only positive indices)
4949 permutations : set [tuple [int , ...]] = set ()
5050 for _ in range (3 ): # Generate 3 different permutations for diversity
5151 perm = tuple (rm .get_random ().sample (pool , length ))
5252 permutations .add (perm )
53-
53+
5454 return permutations
5555
5656
@@ -202,7 +202,9 @@ def random_size_constraint(deps: object, r: int, d: int) -> int:
202202 cp .Value .Le (lambda deps , dtype , struct : 2 ** 4 ),
203203 cp .Rank .Ge (lambda deps : 1 ),
204204 cp .Size .Ge (lambda deps , r , d : 1 ),
205- cp .Size .In (lambda deps , r , d : fn .broadcast_with (deps [0 ].shape , r , d )),
205+ cp .Size .In (
206+ lambda deps , r , d : fn .broadcast_with (deps [0 ].shape , r , d )
207+ ),
206208 max_size_constraint ,
207209 ]
208210 else : # input tensor(b)
@@ -213,7 +215,11 @@ def random_size_constraint(deps: object, r: int, d: int) -> int:
213215 cp .Value .Le (lambda deps , dtype , struct : 2 ** 4 ),
214216 cp .Rank .Ge (lambda deps : 1 ),
215217 cp .Size .Ge (lambda deps , r , d : 1 ),
216- cp .Size .In (lambda deps , r , d : fn .broadcast_with (fn .broadcasted_shape (deps [0 ].shape , deps [1 ].shape ), r , d )),
218+ cp .Size .In (
219+ lambda deps , r , d : fn .broadcast_with (
220+ fn .broadcasted_shape (deps [0 ].shape , deps [1 ].shape ), r , d
221+ )
222+ ),
217223 max_size_constraint ,
218224 ]
219225 case "embedding.default" :
@@ -362,7 +368,9 @@ def random_size_constraint(deps: object, r: int, d: int) -> int:
362368 if index == 1 : # Only apply zero-prevention to divisor
363369 tensor_constraints .extend (
364370 [
365- cp .Value .Ne (lambda deps , dtype , struct : 0 ), # Prevent division by zero
371+ cp .Value .Ne (
372+ lambda deps , dtype , struct : 0
373+ ), # Prevent division by zero
366374 cp .Value .Le (lambda deps , dtype , struct : 2 ** 3 ),
367375 cp .Size .Le (lambda deps , r , d : 2 ** 3 ),
368376 cp .Rank .Le (lambda deps : 2 ** 2 ),
@@ -397,7 +405,9 @@ def random_size_constraint(deps: object, r: int, d: int) -> int:
397405 cp .Dtype .In (lambda deps : [torch .int64 , torch .int32 , torch .float32 ]),
398406 cp .Value .Ge (lambda deps , dtype , struct : - (2 ** 4 )),
399407 cp .Value .Le (lambda deps , dtype , struct : 2 ** 4 ),
400- cp .Value .Ne (lambda deps , dtype , struct : 0 ), # Prevent division by zero
408+ cp .Value .Ne (
409+ lambda deps , dtype , struct : 0
410+ ), # Prevent division by zero
401411 cp .Rank .Ge (lambda deps : 1 ),
402412 cp .Rank .Eq (lambda deps : deps [0 ].dim ()),
403413 cp .Size .Eq (lambda deps , r , d : fn .safe_size (deps [0 ], d )),
@@ -515,7 +525,9 @@ def facto_testcase_gen( # noqa: C901
515525 spec .inspec [index ].constraints .extend (
516526 [
517527 cp .Length .Ge (lambda deps : 1 ),
518- cp .Length .Eq (lambda deps : deps [0 ].dim ()), # Must be a complete permutation
528+ cp .Length .Eq (
529+ lambda deps : deps [0 ].dim ()
530+ ), # Must be a complete permutation
519531 cp .Optional .Eq (lambda deps : False ),
520532 # Generate valid permutations using only positive indices
521533 # Cadence/Xtensa hardware kernels do not support negative dimension indices
0 commit comments