-
Notifications
You must be signed in to change notification settings - Fork 527
/
Copy pathprocess_node.py
217 lines (188 loc) · 6.97 KB
/
process_node.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# Copyright 2024-2025 Arm Limited and/or its affiliates.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
#
# pyre-unsafe
from typing import Any, cast, Dict
import numpy as np
import torch
import torch.fx
from executorch.backends.arm.operators.node_visitor import NodeVisitor
from executorch.backends.arm.tosa_mapping import TosaArg
from executorch.backends.arm.tosa_specification import (
Tosa_0_80,
Tosa_1_00,
TosaSpecification,
)
from executorch.backends.arm.tosa_utils import getNodeArgs, tosa_shape
from torch._export.utils import (
get_buffer,
get_lifted_tensor_constant,
get_param,
is_buffer,
is_lifted_tensor_constant,
is_param,
)
from torch.export.exported_program import ExportedProgram
def process_call_function(
node: torch.fx.Node,
tosa_graph: Any,
node_visitors: Dict[str, NodeVisitor],
tosa_spec: TosaSpecification,
):
# Unpack arguments and convert
inputs = getNodeArgs(node)
# Convert output (this node itself)
try:
output = TosaArg(node)
except ValueError as e:
raise ValueError(
f"Failed processing call_function: {node.name}. "
"Is the original torch function supported?"
) from e
tosa_graph.currRegion.currBasicBlock.addTensor(
output.name, tosa_shape(output.shape, output.dim_order), output.dtype
)
# Visiting each Node
# pyre-ignore[16]: Undefined attribute.
if node.target.__name__ in node_visitors: # type: ignore[union-attr]
# pyre-ignore[16]: Undefined attribute.
node_visitors[node.target.__name__].define_node( # type: ignore[union-attr]
node,
tosa_graph,
inputs,
output,
)
else:
raise RuntimeError(f"Unknown operator {node.target} for TOSA : {tosa_spec}")
def process_inputs(
node: torch.fx.Node,
tosa_graph: Any,
tosa_spec: TosaSpecification,
):
"""Serialize an input node"""
# inputs need to be in default dim_order (contiguous memory format)
meta = node.meta["val"]
if meta.dim_order() != tuple(range(meta.dim())):
raise RuntimeError(
f"Arm backend only supports contiguous memory format for inputs. "
f"Expected dim_order: {tuple(range(meta.dim()))}, but got: {meta.dim_order()} for node {node.name}"
)
try:
tosa_arg = TosaArg(node)
except ValueError as e:
raise ValueError(
f"Failed processing input placeholder: {node.name}. "
"Is the original torch function supported?"
) from e
if isinstance(tosa_spec, Tosa_0_80):
import tosa_tools.v0_80.serializer.tosa_serializer as ts # type: ignore
elif isinstance(tosa_spec, Tosa_1_00):
import serializer.tosa_serializer as ts
else:
raise ValueError(f"Unsupported TOSA spec: {tosa_spec}")
input_shape = tosa_arg.shape
input_dim_order = tosa_arg.dim_order
tensor = ts.TosaSerializerTensor(
tosa_arg.name,
tosa_shape(input_shape, input_dim_order),
tosa_arg.dtype,
data=None,
placeholderFilename=tosa_arg.name + ".npy",
)
tosa_graph.addInputTensor(tensor)
def process_inputs_to_parameters(
node: torch.fx.Node,
tosa_graph: Any,
edge_program: ExportedProgram,
tosa_spec: TosaSpecification,
):
"""Serialize bias and non-quantized weights"""
try:
tosa_arg = TosaArg(node)
except ValueError as e:
raise ValueError(
f"Failed processing parameter placeholder: {node.name}. "
"Is the original torch function supported?"
) from e
parameter_data = get_param(edge_program, node)
assert isinstance(parameter_data, torch.Tensor), "Expect Attr to be tensor"
parameter_values = parameter_data.detach().numpy()
if tosa_arg.dtype == torch.float32:
assert tosa_spec.support_float(), f"{tosa_spec} doesn't support float"
parameter_values = np.transpose(parameter_values, tosa_arg.dim_order)
tosa_graph.addConst(
parameter_values.shape, tosa_arg.dtype, parameter_values, name=tosa_arg.name
)
def process_inputs_to_buffers(
node: torch.fx.Node,
tosa_graph: Any,
edge_program: ExportedProgram,
):
"""Serialize quantized weights"""
try:
tosa_arg = TosaArg(node)
except ValueError as e:
raise ValueError(
f"Failed processing buffer placeholder: {node.name}. "
"Is the original torch function supported?"
) from e
buffer_data = get_buffer(edge_program, node)
assert isinstance(buffer_data, torch.Tensor), "Expect Attr to be tensor"
buffer_values = buffer_data.detach().numpy()
# TODO: fragile code for temporary fix
# the mean and var tensors are also stored here but they have shape (1, )
# we only transpose weights here
buffer_values = np.transpose(buffer_values, tosa_arg.dim_order)
tosa_graph.addConst(
buffer_values.shape, tosa_arg.dtype, buffer_values, name=node.name
)
def process_inputs_to_lifted_tensor_constants(
node: torch.fx.Node,
tosa_graph: Any,
edge_program: ExportedProgram,
):
try:
tosa_arg = TosaArg(node)
except ValueError as e:
raise ValueError(
f"Failed processing lifted tensor constant placeholder: {node.name}. "
"Is the original torch function supported?"
) from e
tensor = get_lifted_tensor_constant(edge_program, node)
tensor_data = tensor.detach().numpy() # type: ignore[union-attr]
tosa_graph.addConst(
tensor_data.shape, tosa_arg.dtype, tensor_data, name=tosa_arg.name
)
def process_placeholder(
node: torch.fx.Node,
tosa_graph: Any,
edge_program: ExportedProgram,
tosa_spec: TosaSpecification,
):
"""Wrapper for processing and serializing all types of placeholders"""
assert node.name == node.target, "Expect placeholder name and target to match"
assert 0 == len(node.args), "Can't handle default input values"
if node.name in edge_program.graph_signature.user_inputs:
process_inputs(node, tosa_graph, tosa_spec)
elif is_param(edge_program, node):
process_inputs_to_parameters(node, tosa_graph, edge_program, tosa_spec)
elif is_buffer(edge_program, node):
process_inputs_to_buffers(node, tosa_graph, edge_program)
elif is_lifted_tensor_constant(edge_program, node):
process_inputs_to_lifted_tensor_constants(node, tosa_graph, edge_program)
elif node.name in edge_program.graph_signature.inputs_to_lifted_custom_objs:
raise NotImplementedError(
"Placeholder is of type 'lifted custom object' which is not supported."
)
else:
raise RuntimeError(f"Placeholder '{node.name}' is of unknown type.")
def process_output(
node: torch.fx.Node,
tosa_graph: Any,
):
for output in cast(tuple[torch.fx.Node, ...], node.args[0]):
tosa_graph.addOutputTensor(
tosa_graph.currRegion.currBasicBlock.tensors[output.name]
)