@@ -201,23 +201,6 @@ def test_forecast(varma_mod, idata, rng):
201201
202202
203203class TestVARMAXWithExogenous :
204- # def test_create_varmax_with_exogenous_k_exog_int(self, data):
205- # mod = BayesianVARMAX(
206- # endog_names=["realgdp", "realcons", "realinv"],
207- # order=(1, 0),
208- # exog_state_names=["exogenous_0", "exogenous_1"],
209- # verbose=False,
210- # measurement_error=False,
211- # stationary_initialization=False,
212- # )
213- # assert mod.k_exog == 2
214- # assert mod.exog_state_names == ["exogenous_0", "exogenous_1"]
215- # assert mod.data_names == ["exogenous_data"]
216- # assert mod.param_dims["beta_exog"] == ("observed_state", "exogenous")
217- # assert mod.coords["exogenous"] == ["exogenous_0", "exogenous_1"]
218- # assert mod.param_info["beta_exog"]["shape"] == (mod.k_endog, 2)
219- # assert mod.param_info["beta_exog"]["dims"] == ("observed_state", "exogenous")
220-
221204 def test_create_varmax_with_exogenous_list_of_names (self , data ):
222205 mod = BayesianVARMAX (
223206 endog_names = ["realgdp" , "realcons" , "realinv" ],
@@ -252,47 +235,6 @@ def test_create_varmax_with_exogenous_both_defined_correctly(self, data):
252235 assert mod .param_info ["beta_exog" ]["shape" ] == (mod .k_endog , 2 )
253236 assert mod .param_info ["beta_exog" ]["dims" ] == ("observed_state" , "exogenous" )
254237
255- # def test_create_varmax_with_exogenous_k_exog_dict(self, data):
256- # k_exog = {"observed_0": 2, "observed_1": 1, "observed_2": 0}
257- # mod = BayesianVARMAX(
258- # endog_names=["observed_0", "observed_1", "observed_2"],
259- # order=(1, 0),
260- # exog_state_names=k_exog,
261- # verbose=False,
262- # measurement_error=False,
263- # stationary_initialization=False,
264- # )
265- # assert mod.k_exog == k_exog
266- # assert mod.exog_state_names == {
267- # "observed_0": ["observed_0_exogenous_0", "observed_0_exogenous_1"],
268- # "observed_1": ["observed_1_exogenous_0"],
269- # "observed_2": [],
270- # }
271- # assert mod.data_names == [
272- # "observed_0_exogenous_data",
273- # "observed_1_exogenous_data",
274- # "observed_2_exogenous_data",
275- # ]
276- # assert mod.param_dims["beta_observed_0"] == ("exogenous_observed_0",)
277- # assert mod.param_dims["beta_observed_1"] == ("exogenous_observed_1",)
278- # assert (
279- # "beta_observed_2" not in mod.param_dims
280- # or mod.param_info.get("beta_observed_2") is None
281- # or mod.param_info.get("beta_observed_2", {}).get("shape", (0,))[0] == 0
282- # )
283-
284- # assert mod.coords["exogenous_observed_0"] == [
285- # "observed_0_exogenous_0",
286- # "observed_0_exogenous_1",
287- # ]
288- # assert mod.coords["exogenous_observed_1"] == ["observed_1_exogenous_0"]
289- # assert "exogenous_observed_2" in mod.coords and mod.coords["exogenous_observed_2"] == []
290-
291- # assert mod.param_info["beta_observed_0"]["shape"] == (2,)
292- # assert mod.param_info["beta_observed_0"]["dims"] == ("exogenous_observed_0",)
293- # assert mod.param_info["beta_observed_1"]["shape"] == (1,)
294- # assert mod.param_info["beta_observed_1"]["dims"] == ("exogenous_observed_1",)
295-
296238 def test_create_varmax_with_exogenous_exog_names_dict (self , data ):
297239 exog_state_names = {"observed_0" : ["a" , "b" ], "observed_1" : ["c" ], "observed_2" : []}
298240 mod = BayesianVARMAX (
@@ -327,30 +269,6 @@ def test_create_varmax_with_exogenous_exog_names_dict(self, data):
327269 assert mod .param_info ["beta_observed_1" ]["shape" ] == (1 ,)
328270 assert mod .param_info ["beta_observed_1" ]["dims" ] == ("exogenous_observed_1" ,)
329271
330- # def test_create_varmax_with_exogenous_both_dict_correct(self, data):
331- # k_exog = {"observed_0": 2, "observed_1": 1}
332- # exog_state_names = {"observed_0": ["a", "b"], "observed_1": ["c"]}
333- # mod = BayesianVARMAX(
334- # endog_names=["observed_0", "observed_1"],
335- # order=(1, 0),
336- # k_exog=k_exog,
337- # exog_state_names=exog_state_names,
338- # verbose=False,
339- # measurement_error=False,
340- # stationary_initialization=False,
341- # )
342- # assert mod.k_exog == k_exog
343- # assert mod.exog_state_names == exog_state_names
344- # assert mod.data_names == ["observed_0_exogenous_data", "observed_1_exogenous_data"]
345- # assert mod.param_dims["beta_observed_0"] == ("exogenous_observed_0",)
346- # assert mod.param_dims["beta_observed_1"] == ("exogenous_observed_1",)
347- # assert mod.coords["exogenous_observed_0"] == ["a", "b"]
348- # assert mod.coords["exogenous_observed_1"] == ["c"]
349- # assert mod.param_info["beta_observed_0"]["shape"] == (2,)
350- # assert mod.param_info["beta_observed_0"]["dims"] == ("exogenous_observed_0",)
351- # assert mod.param_info["beta_observed_1"]["shape"] == (1,)
352- # assert mod.param_info["beta_observed_1"]["dims"] == ("exogenous_observed_1",)
353-
354272 def test_create_varmax_with_exogenous_dict_converts_to_list (self , data ):
355273 exog_state_names = {
356274 "observed_0" : ["a" , "b" ],
@@ -374,76 +292,6 @@ def test_create_varmax_with_exogenous_dict_converts_to_list(self, data):
374292 assert mod .param_info ["beta_exog" ]["shape" ] == (mod .k_endog , 2 )
375293 assert mod .param_info ["beta_exog" ]["dims" ] == ("observed_state" , "exogenous" )
376294
377- # def test_create_varmax_with_exogenous_raises_if_args_disagree(self, data):
378- # # List case
379- # with pytest.raises(
380- # ValueError, match="Length of exog_state_names does not match provided k_exog"
381- # ):
382- # BayesianVARMAX(
383- # k_endog=2,
384- # order=(1, 0),
385- # k_exog=3,
386- # exog_state_names=["a", "b"],
387- # verbose=False,
388- # measurement_error=False,
389- # stationary_initialization=False,
390- # )
391-
392- # # Dict case
393- # with pytest.raises(
394- # ValueError,
395- # match="If k_exog is an int, exog_state_names must be a list of the same length",
396- # ):
397- # BayesianVARMAX(
398- # k_endog=2,
399- # order=(1, 0),
400- # k_exog=2,
401- # exog_state_names={"observed_0": ["a"], "observed_1": ["b"]},
402- # verbose=False,
403- # measurement_error=False,
404- # stationary_initialization=False,
405- # )
406-
407- # # dict + list
408- # with pytest.raises(
409- # ValueError, match="If k_exog is a dict, exog_state_names must be a dict as well"
410- # ):
411- # BayesianVARMAX(
412- # endog_names=["observed_0", "observed_1"],
413- # order=(1, 0),
414- # k_exog={"observed_0": 1, "observed_1": 1},
415- # exog_state_names=["a", "b"],
416- # verbose=False,
417- # measurement_error=False,
418- # stationary_initialization=False,
419- # )
420-
421- # # Dict/dict, key mismatch
422- # with pytest.raises(
423- # ValueError, match="Keys of k_exog and exog_state_names dicts must match"
424- # ):
425- # BayesianVARMAX(
426- # endog_names=["observed_0", "observed_1"],
427- # order=(1, 0),
428- # k_exog={"observed_0": 1, "observed_1": 1},
429- # exog_state_names={"observed_0": ["a"], "observed_2": ["b"]},
430- # verbose=False,
431- # measurement_error=False,
432- # stationary_initialization=False,
433- # )
434-
435- # # Dict/dict, length mismatch
436- # with pytest.raises(ValueError, match="lengths of exog_state_names lists must match"):
437- # BayesianVARMAX(
438- # endog_names=["observed_0", "observed_1"],
439- # order=(1, 0),
440- # k_exog={"observed_0": 2, "observed_1": 1},
441- # exog_state_names={"observed_0": ["a"], "observed_1": ["b"]},
442- # verbose=False,
443- # measurement_error=False,
444- # stationary_initialization=False,
445- # )
446-
447295 def _build_varmax (self , df , exog_state_names , exog_data ):
448296 endog_names = df .columns .values .tolist ()
449297
@@ -514,11 +362,10 @@ def test_varmax_with_exog(self, rng, exog_state_names):
514362 for name , exog_names in exog_state_names .items ()
515363 }
516364 else :
517- exog_names = exog_state_names
518365 exog_data = {
519366 "exogenous_data" : pd .DataFrame (
520367 rng .normal (size = (n_obs , len (exog_state_names ))).astype (floatX ),
521- columns = exog_names ,
368+ columns = exog_state_names ,
522369 index = time_idx ,
523370 )
524371 }
0 commit comments