-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecember03.py
314 lines (256 loc) · 7.9 KB
/
december03.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
#!/usr/bin/env python
"""--- Day 3: Spiral Memory ---
You come across an experimental new kind of memory stored on an infinite
two-dimensional grid.
Each square on the grid is allocated in a spiral pattern starting at a location
marked 1 and then counting up while spiraling outward. For example, the first
few squares are allocated like this::
17 16 15 14 13
18 5 4 3 12
19 6 1 2 11
20 7 8 9 10
21 22 23---> ...
While this is very space-efficient (no squares are skipped), requested data
must be carried back to square 1 (the location of the only access port for this
memory system) by programs that can only move up, down, left, or right. They
always take the shortest path: the
`Manhattan Distance<https://en.wikipedia.org/wiki/Taxicab_geometry>`_ between
the location of the data and square 1.
For example:
* Data from square 1 is carried 0 steps, since it's at the access port.
* Data from square 12 is carried 3 steps, such as: down, left, left.
* Data from square 23 is carried only 2 steps: up twice.
* Data from square 1024 must be carried 31 steps.
How many steps are required to carry the data from the square identified in
your puzzle input all the way to the access port?
"""
from itertools import count
import pytest
def nth_odd(n):
"""
>>> nth_odd(0)
1
>>> nth_odd(1)
3
>>> nth_odd(2)
5
"""
return 2 * n + 1
def last_number_in_nth_square(n):
"""Return the last number present in a square of the loop.
First square is the 0th one.
>>> last_number_in_nth_square(0)
1
>>> last_number_in_nth_square(1)
9
>>> last_number_in_nth_square(2)
25
"""
a = nth_odd(n)
return a * a
def first_number_in_nth_square(n):
"""Return the first number present in a square of the loop.
First square is the 0th one.
>>> first_number_in_nth_square(0)
1
>>> first_number_in_nth_square(1)
2
>>> first_number_in_nth_square(2)
10
>>> first_number_in_nth_square(3)
26
"""
if n == 0:
return 1
return last_number_in_nth_square(n - 1) + 1
def min_steps_to_nth_square(n):
"""Return the minimum number of steps to reach nth square from center.
First square is the 0th one.
>>> min_steps_to_nth_square(1)
1
>>> min_steps_to_nth_square(2)
2
>>> min_steps_to_nth_square(3)
3
>>> min_steps_to_nth_square(4)
4
"""
return n
def steps_in_nth_square_side(n):
"""Return the length in steps of the nth square side.
First square is the 0th one.
>>> steps_in_nth_square_side(0)
1
>>> steps_in_nth_square_side(1)
3
>>> steps_in_nth_square_side(2)
5
>>> steps_in_nth_square_side(3)
7
"""
return nth_odd(n)
def is_in_nth_square(target, n):
"""Does target belong to nth square.
First square is the 0th one.
>>> is_in_nth_square(1, 0)
True
>>> is_in_nth_square(1, 1)
False
>>> is_in_nth_square(2, 1)
True
>>> is_in_nth_square(5, 1)
True
>>> is_in_nth_square(5, 0)
False
>>> is_in_nth_square(23, 2)
True
>>> is_in_nth_square(27, 3)
True
"""
first = first_number_in_nth_square(n)
last = last_number_in_nth_square(n)
return first <= target <= last
def which_square(target):
"""In which square is the target number?
First square is the 0th one.
>>> which_square(1)
0
>>> which_square(2)
1
>>> which_square(5)
1
>>> which_square(6)
1
>>> which_square(23)
2
>>> which_square(27)
3
"""
for i in count(0):
if is_in_nth_square(target, i):
return i
class SquareSpec(object):
"""All the usefull number about the nth square.
First square is the 0th one.
"""
def __init__(self, n):
if n == 0:
self.first = 1
self.last = 1
self.steps_to_equivalent = 1
self.top_right = 1
self.top_left = 1
self.bottom_left = 1
self.bottom_right = 1
self.middle_top = 1
self.middle_bottom = 1
self.middle_right = 1
self.middle_left = 1
else:
self.first = first_number_in_nth_square(n)
self.last = last_number_in_nth_square(n)
self.steps_to_equivalent = steps_in_nth_square_side(n) - 1
self.top_right = self.first + self.steps_to_equivalent - 1
self.top_left = self.first + 2 * self.steps_to_equivalent - 1
self.bottom_left = self.first + 3 * self.steps_to_equivalent - 1
self.bottom_right = self.first + 4 * self.steps_to_equivalent - 1
self.middle_top = self.top_right + self.steps_to_equivalent // 2
self.middle_bottom = self.bottom_left + self.steps_to_equivalent // 2
self.middle_right = self.top_right - self.steps_to_equivalent // 2
self.middle_left = self.top_left + self.steps_to_equivalent // 2
@pytest.mark.parametrize("rank,expected", [
(0, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
(1, [2, 9, 2, 3, 5, 7, 9, 4, 8, 2, 6]),
(2, [10, 25, 4, 13, 17, 21, 25, 15, 23, 11, 19]),
])
def test_quare_spec(rank, expected):
sqr = SquareSpec(rank)
assert sqr.first == expected[0]
assert sqr.last == expected[1]
assert sqr.steps_to_equivalent == expected[2]
assert sqr.top_right == expected[3]
assert sqr.top_left == expected[4]
assert sqr.bottom_left == expected[5]
assert sqr.bottom_right == expected[6]
assert sqr.middle_top == expected[7]
assert sqr.middle_bottom == expected[8]
assert sqr.middle_right == expected[9]
assert sqr.middle_left == expected[10]
def vertical_distance_to_center(target):
"""Vertical distance to the center of the square.
>>> vertical_distance_to_center(1)
0
>>> vertical_distance_to_center(2)
0
>>> vertical_distance_to_center(3)
1
>>> vertical_distance_to_center(9)
1
>>> vertical_distance_to_center(11)
0
>>> vertical_distance_to_center(15)
2
>>> vertical_distance_to_center(16)
2
>>> vertical_distance_to_center(23)
2
>>> vertical_distance_to_center(26)
2
"""
if target == 1:
return 0
square_rank = which_square(target)
square = SquareSpec(square_rank)
if square.top_right <= target <= square.top_left \
or square.bottom_left <= target <= square.bottom_right:
return min_steps_to_nth_square(square_rank)
elif square.first <= target < square.top_right:
return abs(target - square.middle_right)
else:
return abs(target - square.middle_left)
def horizontal_distance_to_center(target):
"""Horizontal distance to the center of the square.
>>> horizontal_distance_to_center(1)
0
>>> horizontal_distance_to_center(2)
1
>>> horizontal_distance_to_center(3)
1
>>> horizontal_distance_to_center(9)
1
>>> horizontal_distance_to_center(11)
2
>>> horizontal_distance_to_center(15)
0
>>> horizontal_distance_to_center(16)
1
>>> horizontal_distance_to_center(23)
0
>>> horizontal_distance_to_center(26)
3
"""
if target == 1:
return 0
square_rank = which_square(target)
square = SquareSpec(square_rank)
if square.top_right <= target <= square.top_left:
return abs(target - square.middle_top)
elif square.bottom_left <= target <= square.bottom_right:
return abs(target - square.middle_bottom)
else:
return min_steps_to_nth_square(square_rank)
def steps_to_carry_data(target):
h = horizontal_distance_to_center(target)
v = vertical_distance_to_center(target)
return h + v
@pytest.mark.parametrize("target,steps", [
(1, 0),
(12, 3),
(23, 2),
(1024, 31),
])
def test_steps_to_carry_data(target, steps):
assert steps_to_carry_data(target) == steps
if __name__ == '__main__':
SQUARE_TO_RETREIVE = 368078
print(steps_to_carry_data(SQUARE_TO_RETREIVE))