-
-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Closed
Labels
Description
What happened:
blockwise
calls unify_chunks
by default but apply_gufunc
does not; so we have a regression in apply_ufunc
now that we've switched from blockwise
to apply_gufunc
.
Minimal Complete Verifiable Example:
import operator
a = xr.DataArray(np.arange(10), dims=("a")).chunk({"a": 2})
b = xr.DataArray(np.arange(10), dims=("a")).chunk({"a": 4})
xr.apply_ufunc(operator.add, a, b, dask="parallelized", output_dtypes=[a.dtype]).compute()
raises
ValueError: Dimension `'__loopdim0__'` with different chunksize present
on master but works with 0.16.0
I think we need to do dask_gufunc_kwargs.setdefault("allow_rechunk", True)
If we want to avoid that, we'll need to go through a deprecation cycle.