16
16
17
17
import numpy as np
18
18
import pandas as pd
19
- from numpy import all as array_all # noqa: F401
20
- from numpy import any as array_any # noqa: F401
21
19
from numpy import ( # noqa: F401
22
20
isclose ,
23
21
isnat ,
@@ -319,7 +317,9 @@ def allclose_or_equiv(arr1, arr2, rtol=1e-5, atol=1e-8):
319
317
if lazy_equiv is None :
320
318
with warnings .catch_warnings ():
321
319
warnings .filterwarnings ("ignore" , r"All-NaN (slice|axis) encountered" )
322
- return bool (isclose (arr1 , arr2 , rtol = rtol , atol = atol , equal_nan = True ).all ())
320
+ return bool (
321
+ array_all (isclose (arr1 , arr2 , rtol = rtol , atol = atol , equal_nan = True ))
322
+ )
323
323
else :
324
324
return lazy_equiv
325
325
@@ -333,7 +333,7 @@ def array_equiv(arr1, arr2):
333
333
with warnings .catch_warnings ():
334
334
warnings .filterwarnings ("ignore" , "In the future, 'NAT == x'" )
335
335
flag_array = (arr1 == arr2 ) | (isnull (arr1 ) & isnull (arr2 ))
336
- return bool (flag_array . all ( ))
336
+ return bool (array_all ( flag_array ))
337
337
else :
338
338
return lazy_equiv
339
339
@@ -349,7 +349,7 @@ def array_notnull_equiv(arr1, arr2):
349
349
with warnings .catch_warnings ():
350
350
warnings .filterwarnings ("ignore" , "In the future, 'NAT == x'" )
351
351
flag_array = (arr1 == arr2 ) | isnull (arr1 ) | isnull (arr2 )
352
- return bool (flag_array . all ( ))
352
+ return bool (array_all ( flag_array ))
353
353
else :
354
354
return lazy_equiv
355
355
@@ -536,6 +536,16 @@ def f(values, axis=None, skipna=None, **kwargs):
536
536
cumsum_1d .numeric_only = True
537
537
538
538
539
+ def array_all (array , axis = None , keepdims = False , ** kwargs ):
540
+ xp = get_array_namespace (array )
541
+ return xp .all (array , axis = axis , keepdims = keepdims , ** kwargs )
542
+
543
+
544
+ def array_any (array , axis = None , keepdims = False , ** kwargs ):
545
+ xp = get_array_namespace (array )
546
+ return xp .any (array , axis = axis , keepdims = keepdims , ** kwargs )
547
+
548
+
539
549
_mean = _create_nan_agg_method ("mean" , invariant_0d = True )
540
550
541
551
0 commit comments