|
| 1 | +import base64 |
| 2 | +from collections.abc import Sequence |
| 3 | +from typing import Literal |
| 4 | + |
| 5 | +from . import exceptions, messages |
| 6 | + |
| 7 | +try: |
| 8 | + from mcp import types as mcp_types |
| 9 | +except ImportError as _import_error: |
| 10 | + raise ImportError( |
| 11 | + 'Please install the `mcp` package to use the MCP server, ' |
| 12 | + 'you can use the `mcp` optional group — `pip install "pydantic-ai-slim[mcp]"`' |
| 13 | + ) from _import_error |
| 14 | + |
| 15 | + |
| 16 | +def map_from_mcp_params(params: mcp_types.CreateMessageRequestParams) -> list[messages.ModelMessage]: |
| 17 | + """Convert from MCP create message request parameters to pydantic-ai messages.""" |
| 18 | + pai_messages: list[messages.ModelMessage] = [] |
| 19 | + request_parts: list[messages.ModelRequestPart] = [] |
| 20 | + if params.systemPrompt: |
| 21 | + request_parts.append(messages.SystemPromptPart(content=params.systemPrompt)) |
| 22 | + response_parts: list[messages.ModelResponsePart] = [] |
| 23 | + for msg in params.messages: |
| 24 | + content = msg.content |
| 25 | + if msg.role == 'user': |
| 26 | + # if there are any response parts, add a response message wrapping them |
| 27 | + if response_parts: |
| 28 | + pai_messages.append(messages.ModelResponse(parts=response_parts)) |
| 29 | + response_parts = [] |
| 30 | + |
| 31 | + # TODO(Marcelo): We can reuse the `_map_tool_result_part` from the mcp module here. |
| 32 | + if isinstance(content, mcp_types.TextContent): |
| 33 | + user_part_content: str | Sequence[messages.UserContent] = content.text |
| 34 | + else: |
| 35 | + # image content |
| 36 | + user_part_content = [ |
| 37 | + messages.BinaryContent(data=base64.b64decode(content.data), media_type=content.mimeType) |
| 38 | + ] |
| 39 | + |
| 40 | + request_parts.append(messages.UserPromptPart(content=user_part_content)) |
| 41 | + else: |
| 42 | + # role is assistant |
| 43 | + # if there are any request parts, add a request message wrapping them |
| 44 | + if request_parts: |
| 45 | + pai_messages.append(messages.ModelRequest(parts=request_parts)) |
| 46 | + request_parts = [] |
| 47 | + |
| 48 | + response_parts.append(map_from_sampling_content(content)) |
| 49 | + |
| 50 | + if response_parts: |
| 51 | + pai_messages.append(messages.ModelResponse(parts=response_parts)) |
| 52 | + if request_parts: |
| 53 | + pai_messages.append(messages.ModelRequest(parts=request_parts)) |
| 54 | + return pai_messages |
| 55 | + |
| 56 | + |
| 57 | +def map_from_pai_messages(pai_messages: list[messages.ModelMessage]) -> tuple[str, list[mcp_types.SamplingMessage]]: |
| 58 | + """Convert from pydantic-ai messages to MCP sampling messages. |
| 59 | +
|
| 60 | + Returns: |
| 61 | + A tuple containing the system prompt and a list of sampling messages. |
| 62 | + """ |
| 63 | + sampling_msgs: list[mcp_types.SamplingMessage] = [] |
| 64 | + |
| 65 | + def add_msg( |
| 66 | + role: Literal['user', 'assistant'], |
| 67 | + content: mcp_types.TextContent | mcp_types.ImageContent | mcp_types.AudioContent, |
| 68 | + ): |
| 69 | + sampling_msgs.append(mcp_types.SamplingMessage(role=role, content=content)) |
| 70 | + |
| 71 | + system_prompt: list[str] = [] |
| 72 | + for pai_message in pai_messages: |
| 73 | + if isinstance(pai_message, messages.ModelRequest): |
| 74 | + if pai_message.instructions is not None: |
| 75 | + system_prompt.append(pai_message.instructions) |
| 76 | + |
| 77 | + for part in pai_message.parts: |
| 78 | + if isinstance(part, messages.SystemPromptPart): |
| 79 | + system_prompt.append(part.content) |
| 80 | + if isinstance(part, messages.UserPromptPart): |
| 81 | + if isinstance(part.content, str): |
| 82 | + add_msg('user', mcp_types.TextContent(type='text', text=part.content)) |
| 83 | + else: |
| 84 | + for chunk in part.content: |
| 85 | + if isinstance(chunk, str): |
| 86 | + add_msg('user', mcp_types.TextContent(type='text', text=chunk)) |
| 87 | + elif isinstance(chunk, messages.BinaryContent) and chunk.is_image: |
| 88 | + add_msg( |
| 89 | + 'user', |
| 90 | + mcp_types.ImageContent( |
| 91 | + type='image', |
| 92 | + data=base64.b64decode(chunk.data).decode(), |
| 93 | + mimeType=chunk.media_type, |
| 94 | + ), |
| 95 | + ) |
| 96 | + # TODO(Marcelo): Add support for audio content. |
| 97 | + else: |
| 98 | + raise NotImplementedError(f'Unsupported content type: {type(chunk)}') |
| 99 | + else: |
| 100 | + add_msg('assistant', map_from_model_response(pai_message)) |
| 101 | + return ''.join(system_prompt), sampling_msgs |
| 102 | + |
| 103 | + |
| 104 | +def map_from_model_response(model_response: messages.ModelResponse) -> mcp_types.TextContent: |
| 105 | + """Convert from a model response to MCP text content.""" |
| 106 | + text_parts: list[str] = [] |
| 107 | + for part in model_response.parts: |
| 108 | + if isinstance(part, messages.TextPart): |
| 109 | + text_parts.append(part.content) |
| 110 | + # TODO(Marcelo): We should ignore ThinkingPart here. |
| 111 | + else: |
| 112 | + raise exceptions.UnexpectedModelBehavior(f'Unexpected part type: {type(part).__name__}, expected TextPart') |
| 113 | + return mcp_types.TextContent(type='text', text=''.join(text_parts)) |
| 114 | + |
| 115 | + |
| 116 | +def map_from_sampling_content( |
| 117 | + content: mcp_types.TextContent | mcp_types.ImageContent | mcp_types.AudioContent, |
| 118 | +) -> messages.TextPart: |
| 119 | + """Convert from sampling content to a pydantic-ai text part.""" |
| 120 | + if isinstance(content, mcp_types.TextContent): # pragma: no branch |
| 121 | + return messages.TextPart(content=content.text) |
| 122 | + else: |
| 123 | + raise NotImplementedError('Image and Audio responses in sampling are not yet supported') |
0 commit comments