Skip to content

Commit b453dec

Browse files
authored
Clean up README by removing installation and license info
Removed installation instructions and license section from README.
1 parent f1549ac commit b453dec

File tree

1 file changed

+0
-121
lines changed

1 file changed

+0
-121
lines changed

README.md

Lines changed: 0 additions & 121 deletions
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,6 @@
33
[![Python 3.12](https://img.shields.io/badge/python-3.12-blue.svg)](https://www.python.org/downloads/)
44
[![FastAPI](https://img.shields.io/badge/FastAPI-0.100+-00a393.svg)](https://fastapi.tiangolo.com/)
55
[![MLflow](https://img.shields.io/badge/MLflow-2.15-0194E2.svg)](https://mlflow.org/)
6-
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
76

87
An end-to-end machine learning system for detecting phishing websites using network security data. Built with production-grade MLOps practices including automated training pipelines, experiment tracking, and real-time inference API.
98

@@ -144,47 +143,6 @@ networkSecuritySystem/
144143
- **Jinja2**: Template rendering
145144
- **Python-dotenv**: Environment management
146145

147-
## 📦 Installation
148-
149-
### Prerequisites
150-
- Python 3.12+
151-
- MongoDB instance (local or Atlas)
152-
- Git
153-
154-
### Setup
155-
156-
1. **Clone the repository**
157-
```bash
158-
git clone https://github.com/pycoder49/networkSecuritySystem.git
159-
cd networkSecuritySystem
160-
```
161-
162-
2. **Create virtual environment**
163-
```bash
164-
# Using conda
165-
conda create -p ./venv python=3.12 -y
166-
conda activate ./venv
167-
168-
# Or using venv
169-
python -m venv venv
170-
source venv/bin/activate # On Windows: venv\Scripts\activate
171-
```
172-
173-
3. **Install dependencies**
174-
```bash
175-
pip install -r requirements.txt
176-
```
177-
178-
4. **Configure environment variables**
179-
```bash
180-
# Create .env file
181-
echo 'MONGODB_URI="your_mongodb_connection_string"' > .env
182-
```
183-
184-
5. **Verify MongoDB connection**
185-
```bash
186-
python test_mongodb.py
187-
```
188146

189147
## 🚀 Usage
190148

@@ -203,25 +161,9 @@ This will:
203161
5. Log experiments to MLflow
204162
6. Save best model to `final_model/`
205163

206-
### Starting the API Server
207-
208-
```bash
209-
# Start FastAPI server
210-
uvicorn app:app --reload --host localhost --port 8000
211-
```
212-
213-
Access the API:
214-
- **Swagger UI**: http://localhost:8000/docs
215-
- **ReDoc**: http://localhost:8000/redoc
216164

217165
### Making Predictions
218166

219-
#### Via API (Swagger UI)
220-
1. Navigate to http://localhost:8000/docs
221-
2. Click on `/predict` endpoint
222-
3. Upload CSV file with network features
223-
4. View predictions in HTML table format
224-
225167
#### Via cURL
226168
```bash
227169
curl -X POST "http://localhost:8000/predict" \
@@ -296,54 +238,6 @@ Logged metrics:
296238
- Model parameters
297239
- Training artifacts
298240

299-
## 🧪 Testing
300-
301-
```bash
302-
# Test individual components
303-
python -m network_security.components.data_ingestion
304-
python -m network_security.components.data_validation
305-
python -m network_security.components.model_trainer
306-
307-
# Test API endpoints
308-
pytest tests/ # (if test suite exists)
309-
```
310-
311-
## 🐛 Troubleshooting
312-
313-
### MongoDB Connection Issues
314-
```python
315-
# Verify connection with certifi
316-
import certifi
317-
ca = certifi.where()
318-
client = pymongo.MongoClient(MONGODB_URI, tlsCAFile=ca)
319-
```
320-
321-
### Model Loading Errors
322-
Ensure preprocessor and model are in `final_model/`:
323-
```
324-
final_model/
325-
├── preprocessor.pkl
326-
└── model.pkl
327-
```
328-
329-
### API Server Issues
330-
```bash
331-
# Check if port is already in use
332-
netstat -ano | findstr :8000 # Windows
333-
lsof -i :8000 # Linux/Mac
334-
335-
# Use different port
336-
uvicorn app:app --port 8001
337-
```
338-
339-
## 🚦 Development Workflow
340-
341-
1. **Data Exploration**: Jupyter notebooks for EDA
342-
2. **Component Development**: Build and test individual pipeline components
343-
3. **Integration**: Connect components in `main.py`
344-
4. **Experimentation**: Use MLflow to track experiments
345-
5. **API Development**: Implement endpoints in `app.py`
346-
6. **Deployment**: Deploy to cloud (AWS, Azure, GCP)
347241

348242
## 🎯 Future Enhancements
349243

@@ -364,18 +258,3 @@ uvicorn app:app --port 8001
364258
365259
- GitHub: [@pycoder49](https://github.com/pycoder49)
366260
- DagHub: [pycoder49/networkSecuritySystem](https://dagshub.com/pycoder49/networkSecuritySystem)
367-
368-
## 📝 License
369-
370-
This project is licensed under the MIT License - see the LICENSE file for details.
371-
372-
## 🙏 Acknowledgments
373-
374-
- Dataset: Network security phishing detection dataset
375-
- MLflow for experiment tracking
376-
- DagHub for remote tracking server
377-
- FastAPI community for excellent documentation
378-
379-
---
380-
381-
**Note**: This is a portfolio project demonstrating end-to-end ML engineering skills including pipeline design, MLOps practices, API development, and production-ready code organization.

0 commit comments

Comments
 (0)