-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainer.py
472 lines (392 loc) · 17 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
import argparse
import os
import shutil
import time
import numpy as np
import statistics
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torchsummary import summary
#import resnet
from sgd import SGD
import torch.nn.functional as F
#from torch.utils.tensorboard import SummaryWriter
from math import ceil
from random import Random
# Importing modules related to distributed processing
import torch.distributed as dist
from torch.multiprocessing import Process
from torch.autograd import Variable
from torch.multiprocessing import spawn
###########
from gossip import GossipDataParallel
from gossip import RingGraph
from gossip import RingGraph_dynamic
from gossip import UniformMixing
from models import *
from collections import Counter
parser = argparse.ArgumentParser(description='Propert ResNets for CIFAR10 in pytorch')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet', help = 'resnet or vgg or resquant' )
parser.add_argument('-depth', '--depth', default=20, type=int,
help='depth of the resnet model')
parser.add_argument('--normtype', default='evonorm', help = 'batchnorm or rangenorm or groupnorm' )
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=200, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--run_no', default=1, type=str, help='parallel run number, models saved as model_{rank}_{run_no}.th')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size (default: 128)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=130, type=int,
metavar='N', help='print frequency (default: 50)')
parser.add_argument('--save-dir', dest='save_dir',
help='The directory used to save the trained models',
default='save_temp', type=str)
parser.add_argument('--port', dest='port',
help='between 3000 to 65000',default='29500' , type=str)
parser.add_argument('--save-every', dest='save_every',
help='Saves checkpoints at every specified number of epochs',
type=int, default=5)
parser.add_argument('--eta', default=1.0, type=float,
metavar='AR', help='averaging rate')
parser.add_argument('--skew', default=0.0, type=float,
help='obelongs to [0,1] where 0= completely iid and 1=completely non-iid')
parser.add_argument('--dataset', dest='dataset',
help='available datasets: cifar10, cifar100', default='cifar10', type=str)
parser.add_argument('--classes', default=10, type=int,
help='number of classes in the dataset')
parser.add_argument('--qgm', default=1, type=int,
help='quasi global momentum 0-false 1-true')
args = parser.parse_args()
class Partition(object):
def __init__(self, data, index):
self.data = data
self.index = index
def __len__(self):
return len(self.index)
def __getitem__(self, index):
data_idx = self.index[index]
return self.data[data_idx]
def skew_sort(indices, skew, classes, class_size, seed=512):
# skew belongs to [0,1]
rng = Random()
rng.seed(seed)
class_indices = {}
for i in range(0, classes):
class_indices[i]=indices[0:class_size]
indices = indices[class_size:]
random_indices = []
sorted_indices = []
sorted_size = int(skew*class_size)
for i in range(0, classes):
sorted_indices = sorted_indices + class_indices[i][0:sorted_size]
random_indices = random_indices + class_indices[i][sorted_size:]
rng.shuffle(random_indices)
return random_indices, sorted_indices
class DataPartitioner(object):
""" Partitions a dataset into different chunks"""
def __init__(self, data, sizes, skew, classes, class_size, seed=512):
self.data = data
self.partitions = []
data_len = len(data)
labels = [data[i][1] for i in range(0, data_len)]
sort_index = np.argsort(np.array(labels))
indices = sort_index.tolist()
indices_rand, indices = skew_sort(indices, skew=skew, classes=classes, class_size=class_size)
for frac in sizes:
if skew==1:
part_len = int(frac*data_len)
self.partitions.append(indices[0:part_len])
indices = indices[part_len:]
elif skew==0:
part_len = int(frac*data_len)
self.partitions.append(indices_rand[0:part_len])
indices_rand = indices_rand[part_len:]
else:
part_len = int(frac*data_len*skew);
part_len_rand = int(frac*data_len*(1-skew))
part_ind = indices[0:part_len]+indices_rand[0:part_len_rand]
self.partitions.append(part_ind)
indices = indices[part_len:]
indices_rand = indices_rand[part_len_rand:]
def use(self, partition):
return Partition(self.data, self.partitions[partition])
def partition_trainDataset():
"""Partitioning dataset"""
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
if args.dataset == 'cifar10':
classes = 10
class_size = 5000
dataset = datasets.CIFAR10(root='/home/min/a/saketi/Desktop/research/data', train=True, transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, 4),
transforms.ToTensor(),
normalize,
]), download=True)
elif args.dataset == 'cifar100':
classes = 100
class_size = 500
dataset = datasets.CIFAR100(root='/home/min/a/saketi/Desktop/research/data', train=True, transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, 4),
transforms.ToTensor(),
normalize,
]), download=True)
size = dist.get_world_size()
bsz = int((args.batch_size) / float(size))
partition_sizes = [1.0/size for _ in range(size)]
partition = DataPartitioner(dataset, partition_sizes, skew=args.skew, classes=classes, class_size=class_size)
#partition = DataPartitioner_iid(dataset, partition_sizes)
partition = partition.use(dist.get_rank())
train_set = torch.utils.data.DataLoader(partition, batch_size=bsz, shuffle=True,
pin_memory=False)
count = dict(Counter([partition.data[i][1] for i in partition.index]))
count_sort = []
weights = []
for i in range(0, classes):
count_sort.append(count[i])
print(count_sort)
return train_set, bsz, weights
def test_Dataset():
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
if args.dataset=='cifar10':
dataset = datasets.CIFAR10(root='/home/min/a/saketi/Desktop/research/data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
normalize,
]))
elif args.dataset=='cifar100':
dataset = datasets.CIFAR100(root='/home/min/a/saketi/Desktop/research/data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
normalize,
]))
#size = dist.get_world_size()
val_bsz = 100
val_set = torch.utils.data.DataLoader(dataset, batch_size=val_bsz, shuffle=False,
pin_memory=False)
return val_set, val_bsz
def run(rank, size):
#writer = SummaryWriter(comment='rank_{}'.format(rank))
torch.manual_seed(1234)
torch.cuda.manual_seed(1234)
torch.backends.cudnn.deterministic = True
device = torch.device("cuda:{}".format(rank%4))
global args, best_prec1
#args = parser.parse_args()
best_prec1 = 0
##############
data_transferred = 0
# Check the save_dir exists or not
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
if 'resnet' in args.arch:
model = resnet(num_classes=args.classes, depth=args.depth, dataset=args.dataset, norm_type=args.normtype, groups=2)
elif args.arch == 'vgg11':
model = vgg11(classes=args.classes)
else:
raise NotImplementedError
if rank==0:
print(args)
print('Printing model summary...')
#print(sum(p.numel() for p in model.parameters() if p.requires_grad))
print(summary(model, (3, 32, 32), batch_size=int(args.batch_size/size), device='cpu'))
#print(model)
graph = RingGraph(rank, size)
mixing = UniformMixing(graph, device)
model = GossipDataParallel(model,
device_ids=[rank%4],
rank=rank,
world_size=size,
graph=graph,
mixing=mixing,
comm_device=device,
eta = args.eta,
momentum=args.momentum,
weight_decay = args.weight_decay,
lr = args.lr,
qgm = args.qgm)
model.to(device)#cuda()
cudnn.benchmark = True
train_loader, bsz_train, weights = partition_trainDataset()
val_loader, bsz_val = test_Dataset()
# define loss function (criterion) and nvidia-smioptimizer
criterion = nn.CrossEntropyLoss().to(device)#cuda()
if args.qgm==1:
optimizer = SGD(model.parameters(), args.lr)
else:
optimizer = SGD(model.parameters(), args.lr, weight_decay=args.weight_decay, momentum = args.momentum)
if rank==0: print(optimizer)
if 'res' in args.arch:
lr_scheduler = optim.lr_scheduler.MultiStepLR(optimizer, gamma = 0.1,
milestones=[100, 150])
elif args.arch == 'vgg11':
lr_scheduler = optim.lr_scheduler.MultiStepLR(optimizer, gamma = 0.5,
milestones=[30, 60, 90, 120, 150, 180])
if args.arch in ['resnet1202', 'resnet110', 'resnet']:
# for resnet1202 original paper uses lr=0.01 for first 400 minibatches for warm-up
# then switch back. In this setup it will correspond for first epoch.
for param_group in optimizer.param_groups:
param_group['lr'] = args.lr*0.1
for epoch in range(0, args.epochs):
if epoch==1:
for param_group in optimizer.param_groups:
param_group['lr'] = args.lr
# train for one epoch
print('current lr {:.5e}'.format(optimizer.param_groups[0]['lr']))
#train(train_loader, model, criterion, optimizer, epoch, bsz_train, writer, device)
model.block()
#################
data_transferred += train(train_loader, model, criterion, optimizer, epoch, bsz_train, optimizer.param_groups[0]['lr'], device)
lr_scheduler.step()
prec1 = validate(val_loader, model, criterion, bsz_val,device, epoch)
# remember best prec@1 and save checkpoint
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
save_checkpoint({
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
}, is_best, filename=os.path.join(args.save_dir, 'model_{}_{}.th'.format(rank, args.run_no)))
#############################
print("Rank : ", rank, "Data transferred(in GB) : ", data_transferred/1.0e9, "\n")
#def train(train_loader, model, criterion, optimizer, epoch, batch_size, writer, device):
def train(train_loader, model, criterion, optimizer, epoch, batch_size, lr, device):
"""
Run one train epoch
"""
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
data_transferred = 0
# switch to train mode
model.train()
end = time.time()
step = len(train_loader)*batch_size*epoch
for i, (input, target) in enumerate(train_loader):
#print('start', i, epoch)
# measure data loading time
data_time.update(time.time() - end)
input_var, target_var = Variable(input).to(device), Variable(target).to(device)
# compute output
output = model(input_var)
loss = criterion(output, target_var)
# compute gradient and do SGD step
loss.backward()
optimizer.step()
optimizer.zero_grad()
_, amt_data_transfer = model.transfer_params(epoch=epoch+(1e-3*i), lr=lr)
#print('end', i, epoch)
data_transferred += amt_data_transfer
output = output.float()
loss = loss.float()
# measure accuracy and record loss
prec1 = accuracy(output.data, target_var)[0]
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Rank: {0}\t'
'Epoch: [{1}][{2}/{3}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
dist.get_rank(), epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1))
step += batch_size
return data_transferred
def validate(val_loader, model, criterion, batch_size, device, epoch=0):
#def validate(val_loader, model, criterion, batch_size, writer, device, epoch=0):
"""
Run evaluation
"""
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# switch to evaluate mode
model.eval()
step = len(val_loader)*batch_size*epoch
end = time.time()
with torch.no_grad():
for i, (input, target) in enumerate(val_loader):
input_var, target_var = Variable(input).to(device), Variable(target).to(device)
# compute output
output = model(input_var)
loss = criterion(output, target_var)
output = output.float()
loss = loss.float()
# measure accuracy and record loss
prec1 = accuracy(output.data, target_var)[0]
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Rank: {0}\t'
'Test: [{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
dist.get_rank(),i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1))
step += batch_size
print(' * Prec@1 {top1.avg:.3f}'
.format(top1=top1))
return top1.avg
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
"""
Save the training model
"""
torch.save(state, filename)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def init_process(rank, size, fn, backend='nccl'):
"""Initialize distributed enviornment"""
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = args.port
dist.init_process_group(backend, rank=rank, world_size=size)
fn(rank,size)
if __name__ == '__main__':
size = 8
spawn(init_process, args=(size,run), nprocs=size,join=True)