-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_gen.py
314 lines (256 loc) · 9.47 KB
/
demo_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import os
import sys
import joblib
import datetime
import argparse
sys.path.append('/workspace/S/heguanhua2/robot_rl/robosuite_jimu')
import numpy as np
import robosuite as suite
import robosuite.macros as macros
from robosuite.controllers import load_controller_config
from robosuite.utils import camera_utils as CU
from robosuite.utils import transform_utils as TU
from PIL import Image
import cv2
import random
# if only use colors, set "opencv"
macros.IMAGE_CONVENTION = "opencv"
from OpenGL import GL
def ignore_gl_errors(*args, **kwargs):
pass
GL.glCheckError = ignore_gl_errors
def imgs2video(imgs, video_dir, fps=20):
assert len(imgs) != 0
frame = imgs[0]
h, w, l = frame.shape
video = cv2.VideoWriter(video_dir, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
for img in imgs:
video.write(img)
video.release()
def fetch_obs(env, obs):
# original observation info
eef_pos = obs['robot0_eef_pos']
eef_quat = obs['robot0_eef_quat']
gripper_qpos = obs['robot0_gripper_qpos']
# get cube position
achieved_goal, desired_goal = env.get_cube_pos()
return np.r_[eef_pos, eef_quat, gripper_qpos,
achieved_goal, desired_goal]
parser = argparse.ArgumentParser()
parser.add_argument('-n', '--num', default=20, type=int)
parser.add_argument('-v', '--view', default='agentview', choices=['frontview', 'agentview', 'birdview'])
args = parser.parse_args()
controller_config = load_controller_config(default_controller="OSC_POSE")
controller_config['control_delta']=False
controller_config['uncouple_pos_ori']=False
# create environment instance
env = suite.make(
#env_name="NutAssembly", # try with other tasks like "Stack" and "Door"
#env_name="PickPlace", # try with other tasks like "Stack" and "Door"
#env_name="Mstt", # try with other tasks like "Stack" and "Door"
env_name="Jimu", # try with other tasks like "Stack" and "Door"
#env_name="Sunmao", # try with other tasks like "Stack" and "Door"
#env_name="Stack", # try with other tasks like "Stack" and "Door"
robots="UR5e", # try with other robots like "Sawyer" and "Jaco"
gripper_types = "default",
controller_configs = controller_config,
#has_renderer=True,
#has_offscreen_renderer=False,
#use_camera_obs = False,
#render_camera = "frontview",
#control_freq = 20,
has_renderer=False,
has_offscreen_renderer=True,
render_gpu_device_id=0,
horizon=500,
render_camera="frontview",
use_object_obs=False,
use_camera_obs=True,
control_freq=6,
camera_depths=True,
camera_heights= 720,
camera_widths=1280,
reward_shaping=True,
)
obs = env.reset()
# set demo save path
demo_dir = os.path.join(os.getcwd(), 'demos')
os.makedirs(demo_dir, exist_ok=True)
current_time = datetime.datetime.now()
save_dir = os.path.join(demo_dir, current_time.strftime("%m%d%H%M%S"))
os.makedirs(save_dir, exist_ok=True)
print(f"generated demo saved in {save_dir}")
demo_list = []
# reset the environment
import time
#start_time = time.time()
obs=env.reset()
curr_state = fetch_obs(env, obs)
action_ori=TU.quat2axisangle(TU.mat2quat(env.robots[0].controller.ee_ori_mat))#TU.quat2axisangle(rotation_world)
action=np.zeros(7)
action[0:3]=obs['robot0_eef_pos']
action[3:6]=action_ori
# print("ori pos", action[0:3], "ori mat", env.robots[0].controller.ee_ori_mat, "ori angle", action[3:6])
# initial_steps = 100
# for i in range(initial_steps):
# obs, reward, done, info = env.step(action) # take action in the environment
# # next_state = fetch_obs(env, obs)
# # demo_list.append((last_state, action, reward, next_state))
# # curr_state = next_state
# curr_state = fetch_obs(env, obs)
reaching_steps = args.num
picking_steps = args.num
gripper_steps = args.num // 2 # twice
lifting_steps = args.num // 2 # twice
moving_steps = args.num
placing_steps = args.num
pick_pos = env.sim.data.body_xpos[env.sim.model.body_name2id(env.jimu_tgt_cubes[-1].root_body)]
cubeB_pos_ranges = env.tgt_cube_poses[-1]
cubeB_pos = [
(cubeB_pos_ranges[0][0]+cubeB_pos_ranges[0][1])/2,
(cubeB_pos_ranges[1][0]+cubeB_pos_ranges[1][1])/2,
(cubeB_pos_ranges[2][0]+cubeB_pos_ranges[2][1])/2-0.02,
]
place_pos = np.array(cubeB_pos)
def rotation_matrix(rot_angle, axis = 'z'):
if axis == "x":
return TU.quat2mat(np.array([np.cos(rot_angle / 2), np.sin(rot_angle / 2), 0, 0]))
elif axis == "y":
return TU.quat2mat(np.array([np.cos(rot_angle / 2), 0, np.sin(rot_angle / 2), 0]))
elif axis == "z":
return TU.quat2mat(np.array([np.cos(rot_angle / 2), 0, 0, np.sin(rot_angle / 2)]))
final_angle = TU.quat2axisangle(TU.mat2quat(rotation_matrix(0.5*np.pi, axis="x")@rotation_matrix(0, axis="y")@rotation_matrix(0, axis='z')))
# 1.reach
colors=obs[args.view + '_image']
img=Image.fromarray(colors)
# img.save(save_dir + '/result_before_reaching.jpg')
# reaching
action = np.zeros(7)
action[:3] = pick_pos
action[3:6] = final_angle
action[2] += 0.1
imgs = []
for i in range(reaching_steps):
obs, reward, done, info = env.step(action) # take action in the environment
next_state = fetch_obs(env, obs)
demo_list.append((curr_state, action, reward, next_state, done))
curr_state = next_state
img = obs[args.view + '_image']
imgs.append(img)
# video_dir = os.path.join(save_dir, 'reaching.mp4')
# imgs2video(imgs, video_dir)
print("reaching reward", reward)
colors=obs['agentview_image']
img=Image.fromarray(colors)
# img.save(save_dir + '/result_after_reaching.jpg')
#assert 0
# 2.picking
action[:3] = pick_pos
action[3:6] = final_angle
for i in range(picking_steps):
obs, reward, done, info = env.step(action) # take action in the environment
img = obs[args.view + '_image']
imgs.append(img)
next_state = fetch_obs(env, obs)
demo_list.append((curr_state, action, reward, next_state, done))
curr_state = next_state
# video_dir = os.path.join(save_dir, 'picking.mp4')
# imgs2video(imgs, video_dir)
print("picking reward", reward)
colors=obs['agentview_image']
img=Image.fromarray(colors)
# img.save(save_dir + '/result_after_picking.jpg')
# 3.picking gripper
action[6] = 1
for i in range(gripper_steps):
obs, reward, done, info = env.step(action) # take action in the environment
img = obs[args.view + '_image']
imgs.append(img)
next_state = fetch_obs(env, obs)
demo_list.append((curr_state, action, reward, next_state, done))
curr_state = next_state
# video_dir = os.path.join(save_dir, 'picking_gripper.mp4')
# imgs2video(imgs, video_dir)
print("picking gripper reward", reward)
colors=obs['agentview_image']
img=Image.fromarray(colors)
# img.save(save_dir + '/result_after_picking_gripper.jpg')
# 4.lifting
action[2] += 0.2
for i in range(lifting_steps):
obs, reward, done, info = env.step(action) # take action in the environment
img = obs[args.view + '_image']
imgs.append(img)
next_state = fetch_obs(env, obs)
demo_list.append((curr_state, action, reward, next_state, done))
curr_state = next_state
# video_dir = os.path.join(save_dir, 'lifting.mp4')
# imgs2video(imgs, video_dir)
print("lifting reward", reward)
colors=obs['agentview_image']
img=Image.fromarray(colors)
# img.save(save_dir + '/result_after_lifting.jpg')
# 5.moving
action[:3] = place_pos
action[2] += 0.2
for i in range(moving_steps):
obs, reward, done, info = env.step(action) # take action in the environment
img = obs[args.view + '_image']
imgs.append(img)
next_state = fetch_obs(env, obs)
demo_list.append((curr_state, action, reward, next_state, done))
curr_state = next_state
# video_dir = os.path.join(save_dir, 'moving.mp4')
# imgs2video(imgs, video_dir)
print("moving reward", reward)
colors=obs['agentview_image']
img=Image.fromarray(colors)
# img.save(save_dir + '/result_after_moving.jpg')
# 6.placing
action[2] -= 0.12
for i in range(placing_steps):
obs, reward, done, info = env.step(action) # take action in the environment
img = obs[args.view + '_image']
imgs.append(img)
next_state = fetch_obs(env, obs)
demo_list.append((curr_state, action, reward, next_state, done))
curr_state = next_state
# video_dir = os.path.join(save_dir, 'placing.mp4')
# imgs2video(imgs, video_dir)
print("placing reward", reward)
colors=obs['agentview_image']
img=Image.fromarray(colors)
# img.save(save_dir + '/result_after_placing.jpg')
# 7.placing griper
action[6] = -1
for i in range(gripper_steps):
obs, reward, done, info = env.step(action) # take action in the environment
img = obs[args.view + '_image']
imgs.append(img)
next_state = fetch_obs(env, obs)
demo_list.append((curr_state, action, reward, next_state, done))
curr_state = next_state
# video_dir = os.path.join(save_dir, 'placing_griper.mp4')
# imgs2video(imgs, video_dir)
print("placing gripper reward", reward)
colors=obs['agentview_image']
img=Image.fromarray(colors)
# img.save(save_dir + '/result_after_placing_gripper.jpg')
# 8.lifting_2
action[2] += 0.2
for i in range(lifting_steps):
obs, reward, done, info = env.step(action) # take action in the environment
img = obs[args.view + '_image']
imgs.append(img)
next_state = fetch_obs(env, obs)
demo_list.append((curr_state, action, reward, next_state, done))
curr_state = next_state
video_dir = os.path.join(save_dir, 'demo.mp4')
imgs2video(imgs, video_dir, 5)
print("place lifting reward", reward)
colors=obs['agentview_image']
img=Image.fromarray(colors)
# img.save(save_dir + '/result_after_lifting_2.jpg')
# save demos
pkl_dir = os.path.join(save_dir, 'demo.pkl')
joblib.dump(demo_list, pkl_dir)