-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
165 lines (116 loc) Β· 5.68 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# DEPENDENCIES
import time
import pyperclip
import streamlit as st
from config.config import Config
from src.utils.logger import LoggerSetup
from src.utils.model_loader import ModelLoader
from src.audio_recorder.record_audio import AudioRecorder
from src.audio_transcriber.transcribe_audio import AudioTranscriber
# LOGGER SETUP
app_logger = LoggerSetup(logger_name = "app.py", log_filename_prefix = "app").get_logger()
# STREAMLIT CONFIGURATION
st.set_page_config(page_title = "Speechify", page_icon = "ποΈ", layout = "wide")
# CUSTOM CSS STYLING
st.markdown(
"""
<style>
body {
background-color: #f4f4f4;
}
.main-title {
font-size: 40px;
font-weight: bold;
color: #6A1B9A;
text-align: center;
}
.record-button {
background-color: #6200EE;
color: white;
font-size: 18px;
padding: 12px;
border-radius: 10px;
}
.transcription-box {
background-color: #ffffff;
padding: 15px;
border-radius: 10px;
box-shadow: 2px 2px 10px rgba(0, 0, 0, 0.1);
}
</style>
""",
unsafe_allow_html = True
)
@st.cache_resource
def load_model():
"""Loads the model and processor and caches them."""
try:
app_logger.info("Loading model...")
model_loader = ModelLoader(model_name=Config.MODEL_NAME)
app_logger.info("Model loaded successfully.")
return model_loader.load_model()
except Exception as e:
app_logger.error(f"Error loading model: {repr(e)}")
return None, None
try:
# Centered Container
with st.container():
st.markdown("<div class = 'container'>", unsafe_allow_html = True)
st.markdown("<h1 class='main-title'>ποΈ Speechify</h1>", unsafe_allow_html = True)
st.markdown("<p style='text-align:center; font-size:18px;'><b>Click the button below to record your voice and get an instant transcription.</b></p>",
unsafe_allow_html = True)
recording_seconds = st.slider("Recording Duration (in seconds):",
min_value = 1,
max_value = 60,
value = Config.RECORD_SECONDS,
step = 1)
# Load model and processor from cache
processor, model = load_model()
# Initialize recorder and transcriber
recorder = AudioRecorder(rate = Config.SAMPLE_RATE,
channels = Config.CHANNELS,
chunk = Config.CHUNK,
record_seconds = recording_seconds
)
transcriber = AudioTranscriber(processor = processor, model = model)
# Ensure session state stores transcription
if "transcription" not in st.session_state:
st.session_state.transcription = ""
if "audio_path" not in st.session_state:
st.session_state.audio_path = None
if st.button("ποΈ Record and Transcribe", key = "record", help = "Click to start recording"):
st.write("π€ **Recording started...**")
audio_path = recorder.record_audio()
st.session_state.audio_path = audio_path
transcription = transcriber.transcribe_audio(audio_path, sample_rate = Config.SAMPLE_RATE)
st.session_state.transcription = transcription
st.write("β
**Recording complete. Transcribing...**")
audio_area, space, transcription_area = st.columns([4, 1, 4])
with audio_area:
st.subheader("π Recorded Audio")
if st.session_state.audio_path:
st.audio(st.session_state.audio_path, format = "audio/wav")
with transcription_area:
st.subheader("Transcription:")
st.write(st.session_state.transcription)
copy_button, download_button, space = st.columns([1, 1, 6])
with copy_button:
if st.session_state.transcription:
if st.button("π", key = "copy_text", help = "Copy your Text to Clipboard"):
pyperclip.copy(st.session_state.transcription)
st.toast("β
Text copied to clipboard!")
with download_button:
if st.session_state.transcription:
st.download_button(label = "π₯",
data = st.session_state.transcription,
file_name = "transcription.txt",
mime = "text/plain",
help = "Download your Transcription"
)
# Footer
st.markdown("---")
st.markdown("<p style='text-align:center;'>Developed with β€οΈ by Priyam Pal [AI and Data Science Engineer] using OpenAI-Whisper</p>",
unsafe_allow_html = True)
except Exception as e:
app_logger.error(f"An error occurred: {repr(e)}")
st.error("An error occurred. Please check the logs for more information.")