-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path.Rhistory
512 lines (512 loc) · 20.9 KB
/
.Rhistory
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
# #Employees in this company are mostly married.
#================= Monthly income ============Maritical_sat<-myData %>%
Monthly_income<-ggplot(data=myData, aes(myData$MonthlyIncome)) +
geom_histogram(breaks=seq(0,20000, by=1000),
col="red",
aes(fill=..count..))+
labs(x="Salary (Monthly)", y="Employee Count")+
scale_fill_gradient("Count", low="orange", high="red")
Monthly_income
# Most of the employees earn less.
#================== "MonthlyRate" =============
#*****************************
#================== "NumCompaniesWorked"========
table(myData$NumCompaniesWorked)
hist(attrition.df$NumCompaniesWorked,main="Number of companies Worked with",xlab="Number of companies",ylab="Count",col="orange")
# #MOst of the people have changed their company less than 2 times.
#================== "Over18" ===================
# All employ above 18 year old
#================== "OverTime" =================
table(myData$OverTime)
over_time<-myData %>%
group_by(OverTime) %>%
tally() %>%
ggplot(aes(x = OverTime, y = n,fill=OverTime)) +
geom_bar(stat = "identity") +
theme_minimal()+
labs(x="Over time ",y="Employee Count")+
ggtitle("No. of Employee work overtime ")+
geom_text(aes(label = n),vjust=-0.5, position = position_dodge(0.9))
over_time
#Most of the employees dont go for over time in this firm.
#================== "PercentSalaryHike" ===========
#================== "PerformanceRating" ===========
#PerformanceRating:-1 'Low' 2 'Good' 3 'Excellent' 4 'Outstanding'
table(myData$PerformanceRating)
performance_rating<-myData %>%
group_by(PerformanceRating) %>%
tally() %>%
ggplot(aes(x = PerformanceRating, y = n,fill=PerformanceRating)) +
geom_bar(stat = "identity") +
theme_minimal()+
labs(x="Performance Rating",y="Employee Count")+
ggtitle("Performance Rating of Employee ")+
geom_text(aes(label = n),vjust=-0.5, position = position_dodge(0.9))
performance_rating
#=================== "RelationshipSatisfaction" ==========
#RelationshipSatisfaction :-1 'Low' 2 'Medium' 3 'High' 4 'Very High'
table(myData$RelationshipSatisfaction)
Relation_sat<-myData %>%
group_by(RelationshipSatisfaction) %>%
tally() %>%
ggplot(aes(x = RelationshipSatisfaction, y = n,fill=RelationshipSatisfaction)) +
geom_bar(stat = "identity") +
theme_minimal()+
labs(x="Relationship satisfaction",y="Employee Count")+
ggtitle("Relationship satisfaction of Employee ")+
geom_text(aes(label = n),vjust=-0.5, position = position_dodge(0.9))
Relation_sat
#================="StandardHours" ==================
# same value apper in all row
#================= "StockOptionLevel" =============
table(myData$StockOptionLevel)
myData %>%
group_by(StockOptionLevel) %>%
tally() %>%
ggplot(aes(x = StockOptionLevel, y = n,fill=StockOptionLevel)) +
geom_bar(stat = "identity") +
theme_minimal()+
labs(x="Stock option level",y="Employee Count")+
ggtitle("Stock Option level of Employee ")+
geom_text(aes(label = n),vjust=-0.5, position = position_dodge(0.9))
#================ "TotalWorkingYears" =============
table(myData$TotalWorkingYears)
Total_working_yr<-ggplot(data=myData, aes(myData$TotalWorkingYears)) +
geom_histogram(breaks=seq(0,40, by=1),
col="red",
aes(fill=..count..))+
labs(x="Total Working Year", y="Employee Count")+
scale_fill_gradient("Count", low="green", high="red")
Total_working_yr
# Most of the employ worked there from 6 to 10 year...not much longer time employ
#================"TrainingTimesLastYear" =============
table(myData$TrainingTimesLastYear)
Total_working_yr<-ggplot(data=myData, aes(myData$TrainingTimesLastYear)) +
geom_histogram(breaks=seq(0,6, by=1),
col="red",
aes(fill=..count..))+
labs(x="Training Time", y="Employee Count")+
scale_fill_gradient("Count", low="green", high="red")
Total_working_yr
# most of employ went for training only 2 to 3 time.
#================ "WorkLifeBalance" ===============
#WorkLifeBalance 1 'Bad' 2 'Good' 3 'Better' 4 'Best'
table(myData$WorkLifeBalance)
work_bal<-myData %>%
group_by(WorkLifeBalance) %>%
tally() %>%
ggplot(aes(x = WorkLifeBalance, y = n,fill=WorkLifeBalance)) +
geom_bar(stat = "identity") +
theme_minimal()+
labs(x="Work life balance",y="Employee Count")+
ggtitle("Work life Balance of Employee ")+
geom_text(aes(label = n),vjust=-0.5, position = position_dodge(0.9))
work_bal
#Work life balance is better in IBM.
#================ "YearsAtCompany" ===========
yr_at_compny<-r<-ggplot(data=myData, aes(myData$YearsAtCompany)) +
geom_histogram(breaks=seq(0,40, by=1),
col="red",
aes(fill=..count..))+
labs(x="Working year", y="Employee Count")+
scale_fill_gradient("Count", low="green", high="red")
yr_at_compny
#Most of the employees at IBM are new and have served the company for less than 10 years.
#================ "YearsInCurrentRole" =========
table(myData$YearsInCurrentRole)
work_on_samerole<-ggplot(data=myData, aes(myData$YearsInCurrentRole)) +
geom_histogram(breaks=seq(0,18, by=1),
col="red",
aes(fill=..count..))+
labs(x="Working year on same role", y="Employee Count")+
scale_fill_gradient("Count", low="green", high="red")
work_on_samerole
#Most of the employees have been in the same role for long period
#=============== "YearsSinceLastPromotion" =======
table(myData$YearsSinceLastPromotion)
hist(attrition.df$YearsSinceLastPromotion,main="years since last promotion",xlab="Years count",ylab="Count",col="yellow")
#Most of the employees have been promoted in the last five years.
#=============== "YearsWithCurrManager" ===========
hist(attrition.df$YearsWithCurrManager,main="Years with current manager",xlab="Years count",ylab="Count",col="yellow")
#Most of the employees have been with the same manager for less than 5 years.
##============See the over all==========
###============Personal================
grid.arrange(age,distance,gender,maritical,Relation_sat)
#result:- Most of the employ in the company are married and male dominating who are live near to company and relationship satisfaction.
####============= Educational===============
grid.arrange(department,education,edu_field,Job_Role,Job_satiftn,performance_rating)
#IBM company's main focus is on research and development as it has the largest team.
#Most of the employees have a bachelor's degree.
# most of the Employ having Life science as educational field followed by medical
# Most of the people from Sales Executive Role ;followed by research Scientist then Laboratory Technician.
# most of the employ is satisfied with their job
#
###=================Year======================
grid.arrange(department,education,edu_field,Job_Role,Job_satiftn,performance_rating)
grid.arrange(businesstravel,department,distance,education,Env_satfacn,Job_invlment, Job_level, Job_Role)
grid.arrange(Job_satiftn, maritical, Monthly_income,over_time, performance_rating, Relation_sat, Total_working_yr,work_bal)
grid.arrange(age,distance,gender,maritical)
grid.arrange(department,education,Env_satfacn,Job_invlment, Job_level, Job_Role)
grid.arrange(Job_satiftn, performance_rating, Relation_sat, work_bal, businesstravel,attrition)
grid.arrange( Monthly_income, Total_working_yr, yr_at_compny, work_on_samerole, over_time)
plot(a_Dt)
#Plot the decision tree:-
plot(a_Dt)
#Plot the decision tree:-
plot(a_Dt)
library(party)
a_Dt<-ctree(Attrition~.,data=a_Train)
tg_dt_pre<-predict(a_Dt,a_Test,type="response")
R_Df<-data.frame(tg_dt_pre,a_Test$Attrition)
colnames(R_Df)<-c("Predicted","Actual")
tab1<-table(R_Df$Predicted,R_Df$Achual);tab1 #Confusion matrix
Dicision_Tree_ACC<-round(sum(diag(tab1))/sum(tab1)*100,digits=3);Dicision_Tree_ACC #Accuracy 87.956%
tab_R_CTG<-table(myData$Attrition);tab_R_CTG
#Plot the decision tree:-
plot(a_Dt)
library(dplyr)
library(VIM)
library(DT)
library(gridExtra)
library(ggplot2)
library(caret)
library(Metrics)
library(randomForest)
library(pROC)
library(e1071)
library(dtree)
library(corrplot)
library(DMwR)
#Reading Data : fread is very fast reading function
myData <- read.csv('C:/Users/Takshak/Desktop/Priyanka/priyanka R work/Attrition.csv',sep = ',',header = TRUE,stringsAsFactors = TRUE)
view(myData)
#First view in Data
names(myData)
str(myData) # glimpse(myData)
dim(myData) #1470 35
summary(myData)
#Removing the column from data which have same value or no use in analysis
myData$EmployeeNumber<-myData$StandardHours <-myData$Over18 <-myData$EmployeeCount <- NULL
dim(myData)
colSums(is.na(myData))
#Converting into factor
myData$Education <- factor(myData$Education)
myData$EnvironmentSatisfaction <- factor(myData$EnvironmentSatisfaction)
myData$JobInvolvement <- factor(myData$JobInvolvement)
myData$JobLevel <- factor(myData$JobLevel)
myData$JobSatisfaction <- factor(myData$JobSatisfaction)
myData$PerformanceRating <- factor(myData$PerformanceRating)
myData$RelationshipSatisfaction <- factor(myData$RelationshipSatisfaction)
myData$StockOptionLevel <- factor(myData$StockOptionLevel)
myData$WorkLifeBalance <- factor(myData$WorkLifeBalance)
library(party)
a_Dt<-ctree(Attrition~.,data=a_Train)
tg_dt_pre<-predict(a_Dt,a_Test,type="response")
R_Df<-data.frame(tg_dt_pre,a_Test$Attrition)
colnames(R_Df)<-c("Predicted","Actual")
tab1<-table(R_Df$Predicted,R_Df$Achual);tab1 #Confusion matrix
Dicision_Tree_ACC<-round(sum(diag(tab1))/sum(tab1)*100,digits=3);Dicision_Tree_ACC #Accuracy 87.956%
tab_R_CTG<-table(myData$Attrition);tab_R_CTG
#Plot the decision tree:-
plot(a_Dt)
library(dplyr)
library(VIM)
library(DT)
library(gridExtra)
library(ggplot2)
library(caret)
library(Metrics)
library(randomForest)
library(pROC)
library(e1071)
library(dtree)
library(corrplot)
library(DMwR)
#Reading Data : fread is very fast reading function
myData <- read.csv('C:/Users/Takshak/Desktop/Priyanka/priyanka R work/Attrition.csv',sep = ',',header = TRUE,stringsAsFactors = TRUE)
view(myData)
#First view in Data
names(myData)
str(myData) # glimpse(myData)
dim(myData) #1470 35
summary(myData)
#Removing the column from data which have same value or no use in analysis
myData$EmployeeNumber<-myData$StandardHours <-myData$Over18 <-myData$EmployeeCount <- NULL
dim(myData)
colSums(is.na(myData))
#Converting into factor
myData$Education <- factor(myData$Education)
myData$EnvironmentSatisfaction <- factor(myData$EnvironmentSatisfaction)
myData$JobInvolvement <- factor(myData$JobInvolvement)
myData$JobLevel <- factor(myData$JobLevel)
myData$JobSatisfaction <- factor(myData$JobSatisfaction)
myData$PerformanceRating <- factor(myData$PerformanceRating)
myData$RelationshipSatisfaction <- factor(myData$RelationshipSatisfaction)
myData$StockOptionLevel <- factor(myData$StockOptionLevel)
myData$WorkLifeBalance <- factor(myData$WorkLifeBalance)
#============= sampling ============================
a_smpl<-sample(2,nrow(myData),replace = TRUE,prob = c(.8,.2)) # Modelling
a_Train<-myData[a_smpl==1,]
a_Test<-myData[a_smpl==2,]
dim(a_Train);dim(a_Test)
#============== Logistic regression ===============
Model_lr_train<-glm(Attrition~.,family=binomial,data = a_Train)
summary(Model_lr_train)
pred_lr<-predict(Model_lr_train,a_Test,type="response")
Df1<-data.frame(pred_lr,a_Test$Attrition)
Df1<-mutate(Df1,pred_lr=ifelse(pred_lr>.5,1,0))
colnames(Df1)<-c("predict","actual")
tab<-table(Df1$predict,Df1$actual);tab # confusion matrix
Log_Acc<-round(sum(diag(tab))/sum(tab)*100,digits = 3);Log_Acc #Accuracy 89.416%
#======================== Random Forest =======================
library(randomForest)
a_rf<-randomForest(Attrition~.,data=a_Train) # Randomforest Functio & control no. tree
tg_rf_pre<-predict(a_rf,a_Test,type="response")
R_rf<-data.frame(tg_rf_pre,a_Test$Attrition)
colnames(R_rf)<-c("Predicted","Actual") #Confusion matrix
tab1<-table(R_rf$Predicted,R_rf$Achual);tab1
Random_Acc<-round(sum(diag(tab1))/sum(tab1)*100,digits = 3);Random_Acc #Accuracy 88.321%
#====================== Dicision Tree ===================================
library(party)
a_Dt<-ctree(Attrition~.,data=a_Train)
tg_dt_pre<-predict(a_Dt,a_Test,type="response")
R_Df<-data.frame(tg_dt_pre,a_Test$Attrition)
colnames(R_Df)<-c("Predicted","Actual")
tab1<-table(R_Df$Predicted,R_Df$Achual);tab1 #Confusion matrix
Dicision_Tree_ACC<-round(sum(diag(tab1))/sum(tab1)*100,digits=3);Dicision_Tree_ACC #Accuracy 87.956%
tab_R_CTG<-table(myData$Attrition);tab_R_CTG
#Plot the decision tree:-
plot(a_Dt)
#============Accuracy=====================
classification<-c("Decision Tree","Random Forest ","Logistic Regression")
Accuray<-paste(c(Dicision_Tree_ACC,Random_Acc,Log_Acc),each="%")
cbind(classification,Accuray)
library(dplyr)
library(VIM)
library(DT)
library(gridExtra)
library(ggplot2)
library(caret)
library(Metrics)
library(randomForest)
library(pROC)
library(e1071)
library(dtree)
library(corrplot)
library(DMwR)
#Reading Data : fread is very fast reading function
myData <- read.csv('C:/Users/Takshak/Desktop/Priyanka/priyanka R work/Attrition.csv',sep = ',',header = TRUE,stringsAsFactors = TRUE)
view(myData)
#First view in Data
names(myData)
str(myData) # glimpse(myData)
dim(myData) #1470 35
summary(myData)
#Removing the column from data which have same value or no use in analysis
myData$EmployeeNumber<-myData$StandardHours <-myData$Over18 <-myData$EmployeeCount <- NULL
dim(myData)
colSums(is.na(myData))
#Converting into factor
myData$Education <- factor(myData$Education)
myData$EnvironmentSatisfaction <- factor(myData$EnvironmentSatisfaction)
myData$JobInvolvement <- factor(myData$JobInvolvement)
myData$JobLevel <- factor(myData$JobLevel)
myData$JobSatisfaction <- factor(myData$JobSatisfaction)
myData$PerformanceRating <- factor(myData$PerformanceRating)
myData$RelationshipSatisfaction <- factor(myData$RelationshipSatisfaction)
myData$StockOptionLevel <- factor(myData$StockOptionLevel)
myData$WorkLifeBalance <- factor(myData$WorkLifeBalance)
#============= sampling ============================
a_smpl<-sample(2,nrow(myData),replace = TRUE,prob = c(.8,.2)) # Modelling
a_Train<-myData[a_smpl==1,]
a_Test<-myData[a_smpl==2,]
dim(a_Train);dim(a_Test)
#============== Logistic regression ===============
Model_lr_train<-glm(Attrition~.,family=binomial,data = a_Train)
summary(Model_lr_train)
pred_lr<-predict(Model_lr_train,a_Test,type="response")
Df1<-data.frame(pred_lr,a_Test$Attrition)
Df1<-mutate(Df1,pred_lr=ifelse(pred_lr>.5,1,0))
colnames(Df1)<-c("predict","actual")
tab<-table(Df1$predict,Df1$actual);tab # confusion matrix
Log_Acc<-round(sum(diag(tab))/sum(tab)*100,digits = 3);Log_Acc #Accuracy 89.416%
#======================== Random Forest =======================
library(randomForest)
a_rf<-randomForest(Attrition~.,data=a_Train) # Randomforest Functio & control no. tree
tg_rf_pre<-predict(a_rf,a_Test,type="response")
R_rf<-data.frame(tg_rf_pre,a_Test$Attrition)
colnames(R_rf)<-c("Predicted","Actual") #Confusion matrix
tab1<-table(R_rf$Predicted,R_rf$Achual);tab1
Random_Acc<-round(sum(diag(tab1))/sum(tab1)*100,digits = 3);Random_Acc #Accuracy 88.321%
#====================== Dicision Tree ===================================
library(party)
a_Dt<-ctree(Attrition~.,data=a_Train)
tg_dt_pre<-predict(a_Dt,a_Test,type="response")
R_Df<-data.frame(tg_dt_pre,a_Test$Attrition)
colnames(R_Df)<-c("Predicted","Actual")
tab1<-table(R_Df$Predicted,R_Df$Achual);tab1 #Confusion matrix
Dicision_Tree_ACC<-round(sum(diag(tab1))/sum(tab1)*100,digits=3);Dicision_Tree_ACC #Accuracy 87.956%
tab_R_CTG<-table(myData$Attrition);tab_R_CTG
#Plot the decision tree:-
plot(a_Dt)
#============Accuracy=====================
classification<-c("Decision Tree","Random Forest ","Logistic Regression")
Accuray<-paste(c(Dicision_Tree_ACC,Random_Acc,Log_Acc),each="%")
cbind(classification,Accuray)
library(dplyr)
library(VIM)
library(DT)
library(gridExtra)
library(ggplot2)
library(caret)
library(Metrics)
library(randomForest)
library(pROC)
library(e1071)
library(dtree)
library(dtree)
library(party)
install.packages("party")
library(randomForest)
library(pROC)
library(e1071)
library(dtree)
library(party)
install.packages("party")
library(party)
install.packages("libcoin")
install.packages("party")
library(randomForest)
library(pROC)
library(e1071)
library(dtree)
library(party)
library(e1071)
library(dtree)
library(dplyr)
library(VIM)
library(DT)
library(gridExtra)
library(ggplot2)
library(caret)
library(Metrics)
library(randomForest)
library(pROC)
library(e1071)
library(dtree)
library(evtree)
install.packages("evtree")
library(e1071)
library(dtree)
library(corrplot)
library(DMwR)
#Reading Data : fread is very fast reading function
myData <- read.csv('C:/Users/Takshak/Desktop/Priyanka/priyanka R work/Attrition.csv',sep = ',',header = TRUE,stringsAsFactors = TRUE)
#Reading Data : fread is very fast reading function
myData <- read.csv('C:/Users/Takshak/Desktop/Desktop/Priyanka/priyanka R work/Attrition.csv',sep = ',',header = TRUE,stringsAsFactors = TRUE)
view(myData)
#First view in Data
names(myData)
str(myData) # glimpse(myData)
dim(myData) #1470 35
summary(myData)
#Removing the column from data which have same value or no use in analysis
myData$EmployeeNumber<-myData$StandardHours <-myData$Over18 <-myData$EmployeeCount <- NULL
dim(myData)
colSums(is.na(myData))
#Converting into factor
myData$Education <- factor(myData$Education)
myData$EnvironmentSatisfaction <- factor(myData$EnvironmentSatisfaction)
myData$JobInvolvement <- factor(myData$JobInvolvement)
myData$JobLevel <- factor(myData$JobLevel)
myData$JobSatisfaction <- factor(myData$JobSatisfaction)
myData$PerformanceRating <- factor(myData$PerformanceRating)
myData$RelationshipSatisfaction <- factor(myData$RelationshipSatisfaction)
myData$StockOptionLevel <- factor(myData$StockOptionLevel)
myData$WorkLifeBalance <- factor(myData$WorkLifeBalance)
a_smpl<-sample(2,nrow(myData),replace = TRUE,prob = c(.8,.2)) # Modelling
a_Train<-myData[a_smpl==1,]
a_Test<-myData[a_smpl==2,]
dim(a_Train);dim(a_Test)
Model_lr_train<-glm(Attrition~.,family=binomial,data = a_Train)
summary(Model_lr_train)
pred_lr<-predict(Model_lr_train,a_Test,type="response")
Df1<-data.frame(pred_lr,a_Test$Attrition)
Df1<-mutate(Df1,pred_lr=ifelse(pred_lr>.5,1,0))
colnames(Df1)<-c("predict","actual")
tab<-table(Df1$predict,Df1$actual);tab # confusion matrix
Log_Acc<-round(sum(diag(tab))/sum(tab)*100,digits = 3);Log_Acc #Accuracy 89.416%
#======================== Random Forest =======================
library(randomForest)
a_rf<-randomForest(Attrition~.,data=a_Train) # Randomforest Functio & control no. tree
tg_rf_pre<-predict(a_rf,a_Test,type="response")
R_rf<-data.frame(tg_rf_pre,a_Test$Attrition)
colnames(R_rf)<-c("Predicted","Actual") #Confusion matrix
tab1<-table(R_rf$Predicted,R_rf$Achual);tab1
Random_Acc<-round(sum(diag(tab1))/sum(tab1)*100,digits = 3);Random_Acc #Accuracy 88.321%
library(party)
a_Dt<-ctree(Attrition~.,data=a_Train)
tg_dt_pre<-predict(a_Dt,a_Test,type="response")
R_Df<-data.frame(tg_dt_pre,a_Test$Attrition)
colnames(R_Df)<-c("Predicted","Actual")
tab1<-table(R_Df$Predicted,R_Df$Achual);tab1 #Confusion matrix
Dicision_Tree_ACC<-round(sum(diag(tab1))/sum(tab1)*100,digits=3);Dicision_Tree_ACC #Accuracy 87.956%
tab_R_CTG<-table(myData$Attrition);tab_R_CTG
#Plot the decision tree:-
plot(a_Dt)
#============Accuracy=====================
classification<-c("Decision Tree","Random Forest ","Logistic Regression")
Accuray<-paste(c(Dicision_Tree_ACC,Random_Acc,Log_Acc),each="%")
cbind(classification,Accuray)
runApp('C:/Priyanka/Coursera/shiny/Nobel_Prize_winner')
runApp('C:/Priyanka/Coursera/shiny/Nobel_Prize_winner')
install.packages("MASS")
install.packages("MASS")
install.packages("MASS")
shiny::runApp('C:/Priyanka/Coursera/shiny/Nobel_Prize_winner')
grid.arrange(department,education,Job_invlment, Job_level, Job_Role,Env_satfacn)
grid.arrange(Job_satiftn, performance_rating, Relation_sat, work_bal, businesstravel,attrition)
grid.arrange( Monthly_income, Total_working_yr, yr_at_compny, work_on_samerole, over_time)
install.packages("gridExtra")
install.packages("MASS")
install.packages("MASS")
install.packages("gridExtra")
shiny::runApp('C:/Priyanka/Coursera/shiny/Nobel_Prize_winner')
shiny::runApp('C:/Priyanka/Coursera/shiny/Nobel_Prize_winner')
install.packages("rsconnect")
library(tinytex)
install.packages("tinytex")
tinytex::install_tinytex()
tinytex::install_tinytex()
library(rsconnect)
rsconnect::deployApp('path/to/your/app')
library(rsconnect)
shiny::runApp('C:/Priyanka/Coursera/shiny/Nobel_Prize_winner')
runApp('C:/Priyanka/Coursera/shiny/Nobel_Prize_winner')
runApp('C:/Priyanka/Coursera/shiny/Nobel_Prize_winner')
library(rsconnect)
deployApp()
library(rsconnect)
deployApp()
rsconnect::setAccountInfo(name="priyankaapp", token="<TOKEN>", secret="<SECRET>")
rsconnect::setAccountInfo(name='priyankaapp',
token='3226FE86381BDE93D9251B59C09219D5',
secret='3KNAaOhAtVGp5Jgx9NeHCVcpKLTMYCxbJoDTnwRs')
runApp('C:/Priyanka/Coursera/shiny/Nobel_Prize_winner')
runApp('C:/Priyanka/Coursera/shiny/Road_accident2005_17')
install.packages("RInno")
require(RInno)
RInno::install_inno()
create_app(app_name = "priyankaapp", app_dir = "path/to/myapp", include_R = TRUE)
runApp('C:/Priyanka/Coursera/shiny/Road_accident2005_17')
runApp('C:/Priyanka/Coursera/shiny/Road_accident2005_17')
runApp('C:/Priyanka/Coursera/shiny/Road_accident2005_17')
runApp('C:/Priyanka/Coursera/shiny/Road_accident2005_17')
clear
clc
runApp('C:/Priyanka/Coursera/shiny/Road_accident2005_17')
runApp('C:/Priyanka/Coursera/shiny/Road_accident2005_17')
rsconnect::showLogs()
shiny::runApp('C:/Priyanka/Coursera/shiny/Road_accident2005_17')
shiny::runApp()