-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLSD_Radix_sort .py
57 lines (45 loc) · 1.74 KB
/
LSD_Radix_sort .py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
"""" LSD Radix sort """
class Solution:
def counting_sort(self, lst: List[int], place_val: int, K: int = 10) -> None:
"""
Sorts a list of integers where minimum value is 0 and maximum value is K
"""
# intitialize count array of size K
counts = [0] * K
for elem in lst:
digit = (elem // place_val) % 10
counts[digit] += 1
# we now overwrite our original counts with the starting index
# of each digit over our group of digits
starting_index = 0
for i, count in enumerate(counts):
counts[i] = starting_index
starting_index += count
sorted_lst = [0] * len(lst)
for elem in lst:
digit = (elem // place_val) % 10
sorted_lst[counts[digit]] = elem
# since we have placed an item in index counts[digit],
# we need to increment counts[digit] index by 1 so the
# next duplicate digit is placed in appropriate index
counts[digit] += 1
# common practice to copy over sorted list into original lst
# it's fine to just return the sorted_lst at this point as well
for i in range(len(lst)):
lst[i] = sorted_lst[i]
def radix_sort(self, lst: List[int]) -> None:
# shift the minimum value in lst to be 0
shift = min(lst)
lst[:] = [num - shift for num in lst]
max_elem = max(lst)
# apply the radix sort algorithm
place_val = 1
while place_val <= max_elem:
self.counting_sort(lst, place_val)
place_val *= 10
# undo the original shift
lst[:] = [num + shift for num in lst]
"""
Time Complexity:O(W(N+K)
Space Complexity: O(N+K)
"""