-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path259. 3Sum_Smaller_binary search.py
61 lines (47 loc) · 1.65 KB
/
259. 3Sum_Smaller_binary search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
"""Problem No.: 259
Problem: 3Sum Smaller
Approach: binary search
Date: 31/07/2023
Detailed Problem:Given an array of n integers nums and an integer target, find the number of index triplets i, j, k with 0 <= i < j < k < n that satisfy the condition nums[i] + nums[j] + nums[k] < target.
Example 1:
Input: nums = [-2,0,1,3], target = 2
Output: 2
Explanation: Because there are two triplets which sums are less than 2:
[-2,0,1]
[-2,0,3]
Example 2:
Input: nums = [], target = 0
Output: 0
Example 3:
Input: nums = [0], target = 0
Output: 0
"""
class Solution:
def threeSumSmaller(self, nums: List[int], target: int) -> int:
result =0
nums.sort()
if len(nums) <3:
return 0
for i in range(len(nums)-2):
result +=self.twoSum(nums,i+1,target-nums[i])
return result
def twoSum(self,nums, startindex,target):
result = 0
for i in range(startindex,len(nums)-1):
j = self.binarySearch(nums,i,target-nums[i])
result += j-i
return result
def binarySearch(self,nums, startindex,target):
left = startindex
right = len(nums)-1
while left<right:
mid =(right+left+1)//2
if nums[mid]<target:
left = mid
else:
right = mid-1
return left
"""
Time Complexity:O(n2 logn) The binarySearch function takes O(logn) time, therefore the twoSumSmaller takes O(nlogn) time. The threeSumSmaller wraps with another for-loop, and therefore is O(n2logn) time.
Space Complexity: O(1) because no additional data structures are used.
"""