-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path15._3Sum_.py
63 lines (55 loc) · 1.92 KB
/
15._3Sum_.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
"""Problem No.: 15
Problem: 3Sum
DS: Hash map
Approach:
Date: 26/07/2023
Detailed Problem: Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]] such that i != j, i != k, and j != k, and nums[i] + nums[j] + nums[k] == 0.
Notice that the solution set must not contain duplicate triplets.
Example 1:
Input: nums = [-1,0,1,2,-1,-4]
Output: [[-1,-1,2],[-1,0,1]]
Explanation:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0.
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0.
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0.
The distinct triplets are [-1,0,1] and [-1,-1,2].
Notice that the order of the output and the order of the triplets does not matter.
Example 2:
Input: nums = [0,1,1]
Output: []
Explanation: The only possible triplet does not sum up to 0.
Example 3:
Input: nums = [0,0,0]
Output: [[0,0,0]]
Explanation: The only possible triplet sums up to 0.
"""
class Solution:
def threeSum(self, nums: List[int]) -> List[List[int]]:
result = []
nums.sort()
for i in range(len(nums)):
if nums[i]>0:
break
if i ==0 or nums[i-1] != nums[i]:
self.twoSum(nums,i,result)
return result
def twoSum(self,nums, i,result):
low = i+1
high = len(nums)-1
while (low <high):
sum = nums[i]+nums[low]+nums[high]
if sum>0:
high -=1
elif sum<0:
low +=1
else:
result.append([nums[i],nums[low],nums[high]])
low +=1
high -=1
while (low<high )and nums[low]== nums[low-1]:
low +=1
"""
Time Complexity:O(n*2). twoSum is O(n), and we call it n times.
Sorting the array takes O(nlogn), so overall complexity is O(nlogn+n2). This is asymptotically equivalent to O(n2)
Space Complexity: O(n) for the hashset.
"""