forked from toshikwa/gail-airl-ppo.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_imitation_discrete.py
79 lines (70 loc) · 2.79 KB
/
train_imitation_discrete.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import argparse
import os
from datetime import datetime
from pathlib import Path
import gym
import torch
from gail_airl_ppo.algo.discrete import AIRL, SerializedBuffer
from gail_airl_ppo.trainer_discrete import Trainer
PACKAGE_PATH = Path(__file__) # Abs path of package
def run(args):
env = gym.make(args.env_id)
eval_env = gym.make(args.env_id)
state_dim = env.observation_space.shape[0]
action_dim = action_dim = env.action_space.n
device = torch.device("cuda" if (torch.cuda.is_available() and args.cuda) else "cpu")
torch.cuda.empty_cache()
buffer_exp = SerializedBuffer(
path=args.buffer,
device=device
)
algo = AIRL(
buffer_exp=buffer_exp,
state_dim=state_dim,
action_dim=action_dim,
device=device,
seed=args.seed,
rollout_length=args.rollout_length,
gamma=0.995, mix_buffer=1,
batch_size=64, lr_actor=3e-4, lr_critic=3e-4, lr_disc=3e-4,
units_disc_r=(100, 100), units_disc_v=(100, 100),
epoch_ppo=args.epoch_ppo, epoch_disc=args.epoch_disc, clip_eps=0.2, lambd=0.97,
ent_coef=1e-3, max_grad_norm=10.0, save_interval=args.save_interval,
eval_interval=args.eval_interval, num_eval_eps=100, net_width=64,
l2_reg=1e-3, adv_norm=False, ent_coef_decay=0.99,
)
time = datetime.now().strftime("%Y%m%d-%H%M")
log_dir = os.path.join(
'logs', args.env_id, 'ppo', f'seed{args.seed}-{time}')
trainer = Trainer(
env_id=args.env_id,
env=env,
eval_env=eval_env,
algo=algo,
log_dir=log_dir,
num_steps=args.num_steps,
seed=args.seed,
render=args.render,
write=args.write,
save_path=args.save_path,
)
trainer.train()
if __name__ == '__main__':
p = argparse.ArgumentParser()
p.add_argument('--buffer', type=str, default=f'{PACKAGE_PATH}/buffers/CartPole-v1/size1000000_std0.0_prand0.0.pth')
p.add_argument('--save_path', type=str, default=f'{PACKAGE_PATH}/irl_models/rl_models')
p.add_argument('--rollout_length', type=int, default=1000)
p.add_argument('--num_steps', type=int, default=10**7)
p.add_argument('--eval_interval', type=int, default=10000)
p.add_argument('--save_interval', type=int, default=1e5)
p.add_argument('--epoch_disc', type=int, default=20)
p.add_argument('--epoch_ppo', type=int, default=200)
# p.add_argument('--env_id', type=str, default='LunarLander-v2')
p.add_argument('--env_id', type=str, default="CartPole-v1")
p.add_argument('--algo', type=str, default='gail')
p.add_argument('--cuda', type=bool, default=True)
p.add_argument('--render', type=bool, default=True)
p.add_argument('--write', type=bool, default=False)
p.add_argument('--seed', type=int, default=0)
args = p.parse_args()
run(args)