forked from toshikwa/gail-airl-ppo.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_expert_discrete.py
94 lines (85 loc) · 3.35 KB
/
train_expert_discrete.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import argparse
import os
from datetime import datetime
from pathlib import Path
from time import time
import gym
import torch
import yaml
from gail_airl_ppo.algo.discrete import PPO
from gail_airl_ppo.trainer_discrete import Trainer
def run(args):
env = gym.make(args.env_id)
eval_env = gym.make(args.env_id)
state_dim = env.observation_space.shape[0]
action_dim = action_dim = env.action_space.n
device = torch.device("cuda" if (torch.cuda.is_available() and args.cuda) else "cpu")
torch.cuda.empty_cache()
kwargs = {
"state_dim": state_dim,
"action_dim": action_dim,
"rollout_length": args.rollout_length,
"save_interval": args.save_interval,
"eval_interval": args.eval_interval,
"num_eval_episodes": args.num_eval_eps,
"gamma": args.gamma,
"lambd": args.lambd,
"net_width": args.net_width,
"lr_actor": args.lr_actor,
"lr_critic": args.lr_critic,
"clip_eps": args.clip_eps,
"epoch_ppo": args.epoch_ppo,
"batch_size": args.batch_size,
"l2_reg": args.l2_reg,
"entropy_coef": args.ent_coef, # hard env needs large value
"adv_normalization": args.adv_norm,
"entropy_coef_decay": args.ent_coef_decay,
"device": device,
}
algo = PPO(
**kwargs
)
time = datetime.now().strftime("%Y%m%d-%H%M")
log_dir = os.path.join(
'logs', args.env_id, 'ppo', f'seed{args.seed}-{time}')
trainer = Trainer(
env_id=args.env_id,
env=env,
eval_env=eval_env,
algo=algo,
log_dir=log_dir,
num_steps=args.num_steps,
seed=args.seed,
render=args.render,
write=args.write,
)
trainer.train()
if __name__ == '__main__':
p = argparse.ArgumentParser()
p.add_argument('--num_steps', type=int, default=3e6)
p.add_argument('--num_eval_eps', type=int, default=100)
p.add_argument('--rollout_length', type=int, default=1000)
p.add_argument('--eval_interval', type=int, default=10000)
p.add_argument('--save_interval', type=int, default=1e5)
p.add_argument('--net_width', type=int, default=64, help='Hidden net width')
p.add_argument('--epoch_ppo', type=int, default=80, help='PPO update times')
p.add_argument('--batch_size', type=int, default=64, help='lenth of sliced trajectory')
p.add_argument('--adv_norm', type=bool, default=False)
p.add_argument('--gamma', type=float, default=0.99)
p.add_argument('--lambd', type=float, default=0.95)
p.add_argument('--l2_reg', type=float, default=1e-3)
p.add_argument('--ent_coef', type=float, default=1e-3)
p.add_argument('--ent_coef_decay', type=float, default=0.99)
p.add_argument('--clip_eps', type=float, default=0.2)
p.add_argument('--lr_actor', type=float, default=0.0003)
p.add_argument('--lr_critic', type=float, default=0.001)
p.add_argument('--env_id', type=str, default="CartPole-v1")
# p.add_argument('--env_id', type=str, default='LunarLander-v2')
p.add_argument('--cuda', type=bool, default=True)
# p.add_argument('--seed', type=int, default=209)
# p.add_argument('--seed', type=int, default=int(time()))
p.add_argument('--seed', type=int, default=0)
p.add_argument('--render', type=bool, default=False)
p.add_argument('--write', type=bool, default=False)
args = p.parse_args()
run(args)