forked from toshikwa/gail-airl-ppo.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcollect_demo_discrete.py
59 lines (52 loc) · 2.12 KB
/
collect_demo_discrete.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import argparse
import os
from pathlib import Path
import torch
from gail_airl_ppo.algo.discrete import PPOExpert
from gail_airl_ppo.algo.discrete.utils import collect_demo
from gail_airl_ppo.env import make_env
PACKAGE_PATH = Path(__file__) # Abs path of package
def run(args):
env = make_env(args.env_id)
state_dim = env.observation_space.shape[0]
action_dim = action_dim = env.action_space.n
device = torch.device("cuda" if (torch.cuda.is_available() and args.cuda) else "cpu")
torch.cuda.empty_cache()
net_width=64
algo = PPOExpert(
state_dim=state_dim,
action_dim=action_dim,
net_width=net_width,
device=device,
actor_path=args.actor_weight,
critic_path=args.critic_weight,
)
buffer = collect_demo(
env=env,
algo=algo,
buffer_size=args.buffer_size,
device=device,
std=args.std,
p_rand=args.p_rand,
seed=args.seed
)
buffer.save(os.path.join(
'buffers',
args.env_id,
f'size{args.buffer_size}_std{args.std}_prand{args.p_rand}.pth'
))
if __name__ == '__main__':
p = argparse.ArgumentParser()
p.add_argument('--actor_weight', type=str, default=f'{PACKAGE_PATH}/gail_airl_ppo/model/CartPole-v1/actor/ppo_actor_100000.pth')
p.add_argument('--critic_weight', type=str, default=f'{PACKAGE_PATH}/gail_airl_ppo/model/CartPole-v1/critic/ppo_critic_100000.pth')
# p.add_argument('--actor_weight', type=str, default=f'{PACKAGE_PATH}/irl_models/rl_models/CartPole-v1/actor/ppo_actor_2200000.pth')
# p.add_argument('--critic_weight', type=str, default=f'{PACKAGE_PATH}/irl_models/rl_models/CartPole-v1/critic/ppo_critic_2200000.pth')
# p.add_argument('--env_id', type=str, default='LunarLander-v2')
p.add_argument('--env_id', type=str, default="CartPole-v1")
p.add_argument('--buffer_size', type=int, default=10**4)
p.add_argument('--std', type=float, default=0.0)
p.add_argument('--p_rand', type=float, default=0.0)
p.add_argument('--cuda', type=bool, default=True)
p.add_argument('--seed', type=int, default=0)
args = p.parse_args()
run(args)