|
| 1 | +from korvus import Collection, Pipeline |
| 2 | +from firecrawl import FirecrawlApp |
| 3 | +import os |
| 4 | +import time |
| 5 | +import asyncio |
| 6 | +from rich import print |
| 7 | +from rich.pretty import pprint |
| 8 | +from dotenv import load_dotenv |
| 9 | +import argparse |
| 10 | + |
| 11 | + |
| 12 | +# Load variables from our .env file |
| 13 | +load_dotenv() |
| 14 | + |
| 15 | + |
| 16 | +# Configure our program args |
| 17 | +parser = argparse.ArgumentParser(description="Example Korvus x Firecrawl") |
| 18 | +parser.add_argument( |
| 19 | + "action", choices=["crawl", "search", "rag"], help="Action to perform" |
| 20 | +) |
| 21 | + |
| 22 | + |
| 23 | +# Initialize the FirecrawlApp with your API key |
| 24 | +firecrawl = FirecrawlApp(api_key=os.environ["FIRECRAWL_API_KEY"]) |
| 25 | + |
| 26 | + |
| 27 | +# Define our Pipeline and Collection |
| 28 | +pipeline = Pipeline( |
| 29 | + "v0", |
| 30 | + { |
| 31 | + "markdown": { |
| 32 | + "splitter": {"model": "markdown"}, |
| 33 | + "semantic_search": { |
| 34 | + "model": "mixedbread-ai/mxbai-embed-large-v1", |
| 35 | + }, |
| 36 | + }, |
| 37 | + }, |
| 38 | +) |
| 39 | +collection = Collection( |
| 40 | + "korvus-firecrawl-example-0", database_url=os.environ["KORVUS_DATABASE_URL"] |
| 41 | +) |
| 42 | + |
| 43 | + |
| 44 | +# Add our Pipeline to our Collection |
| 45 | +async def add_pipeline(): |
| 46 | + await collection.add_pipeline(pipeline) |
| 47 | + |
| 48 | + |
| 49 | +# Crawl with Firecrawl |
| 50 | +def crawl(): |
| 51 | + print("Crawling...") |
| 52 | + job = firecrawl.crawl_url( |
| 53 | + os.environ["CRAWL_URL"], |
| 54 | + params={ |
| 55 | + "limit": int(os.environ["CRAWL_LIMIT"]), |
| 56 | + "scrapeOptions": {"formats": ["markdown"]}, |
| 57 | + }, |
| 58 | + poll_interval=30, |
| 59 | + ) |
| 60 | + return job |
| 61 | + |
| 62 | + |
| 63 | +# Do RAG |
| 64 | +async def do_rag(user_query): |
| 65 | + results = await collection.rag( |
| 66 | + { |
| 67 | + "CONTEXT": { |
| 68 | + "vector_search": { |
| 69 | + "query": { |
| 70 | + "fields": { |
| 71 | + "markdown": { |
| 72 | + "query": user_query, |
| 73 | + "parameters": { |
| 74 | + "prompt": "Represent this sentence for searching relevant passages: " |
| 75 | + }, |
| 76 | + } |
| 77 | + }, |
| 78 | + }, |
| 79 | + "document": {"keys": ["id"]}, |
| 80 | + "rerank": { |
| 81 | + "model": "mixedbread-ai/mxbai-rerank-base-v1", |
| 82 | + "query": user_query, |
| 83 | + "num_documents_to_rerank": 100, |
| 84 | + }, |
| 85 | + "limit": 5, |
| 86 | + }, |
| 87 | + "aggregate": {"join": "\n\n\n"}, |
| 88 | + }, |
| 89 | + "chat": { |
| 90 | + "model": "meta-llama/Meta-Llama-3.1-405B-Instruct", |
| 91 | + "messages": [ |
| 92 | + { |
| 93 | + "role": "system", |
| 94 | + "content": "You are a question and answering bot. Answer the users question given the context succinctly.", |
| 95 | + }, |
| 96 | + { |
| 97 | + "role": "user", |
| 98 | + "content": f"Given the context\n\n:{{CONTEXT}}\n\nAnswer the question: {user_query}", |
| 99 | + }, |
| 100 | + ], |
| 101 | + "max_tokens": 256, |
| 102 | + }, |
| 103 | + }, |
| 104 | + pipeline, |
| 105 | + ) |
| 106 | + return results |
| 107 | + |
| 108 | + |
| 109 | +# Do search |
| 110 | +async def do_search(user_query): |
| 111 | + results = await collection.search( |
| 112 | + { |
| 113 | + "query": { |
| 114 | + "semantic_search": { |
| 115 | + "markdown": { |
| 116 | + "query": user_query, |
| 117 | + }, |
| 118 | + }, |
| 119 | + }, |
| 120 | + "limit": 5, |
| 121 | + }, |
| 122 | + pipeline, |
| 123 | + ) |
| 124 | + return results |
| 125 | + |
| 126 | + |
| 127 | +# Get user input and call our callback |
| 128 | +async def input_loop(callback): |
| 129 | + while True: |
| 130 | + query = input("Enter your query (or 'q' to quit): ") |
| 131 | + if query.lower() == "q": |
| 132 | + break |
| 133 | + results = await callback(query) |
| 134 | + print("\n[bold]Results:[/bold]\n") |
| 135 | + pprint(results, max_length=2, max_string=100) |
| 136 | + |
| 137 | + |
| 138 | +# Our main function |
| 139 | +async def main(): |
| 140 | + args = parser.parse_args() |
| 141 | + |
| 142 | + if args.action == "crawl": |
| 143 | + # Add our Pipeline to our Collection |
| 144 | + # We only ever need to do this once |
| 145 | + # Calling it more than once does nothing |
| 146 | + await add_pipeline() |
| 147 | + |
| 148 | + # Crawl the website |
| 149 | + results = crawl() |
| 150 | + |
| 151 | + # Construct our documents to upsert |
| 152 | + documents = [ |
| 153 | + {"id": data["metadata"]["sourceURL"], "markdown": data["markdown"]} |
| 154 | + for data in results["data"] |
| 155 | + ] |
| 156 | + |
| 157 | + # Upsert our documents |
| 158 | + await collection.upsert_documents(documents) |
| 159 | + |
| 160 | + elif args.action == "rag": |
| 161 | + await input_loop(do_rag) |
| 162 | + |
| 163 | + elif args.action == "search": |
| 164 | + await input_loop(do_search) |
| 165 | + |
| 166 | + |
| 167 | +asyncio.run(main()) |
0 commit comments